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Abstract

An extrinsic cohesive zone model with a novel unload–reload behaviour is developed in the framework of non-smooth
echanics. The model is extended to include the effects of dynamics with impact, and is discretised in such a way that it

an be written as a Linear Complementarity Problem (LCP). This LCP is proved to be well-posed, and to respect the discrete
nergy balance of the system. Finally, the LCP system is validated numerically, in both statics and dynamics, by simple test
ases, and more involved finite element simulations that correspond to standard test geometries in the literature. The results
orrespond well with those of other authors, while also demonstrating the simulations’ ability to resolve with relatively large
ime steps while respecting the energetic balance.

2022 Elsevier B.V. All rights reserved.
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Notation

For vectors and tensors, we choose the following notation:

∥x∥
2

= ∥x∥
2

= xi x i  
indicial notation

= x · x  
tensor notation

= x⊤x  
vector notation

. (1)

1. Introduction

The modelling of crack propagation touches on a wide variety of areas of interest within mechanics, ranging
from a geological scale such as earthquakes and avalanches [1,2], engineered materials such as composites [3],
polymers [4] and elastomers [5], to the small grains in materials such as sandstone or concrete [6]. While linear
elastic fracture mechanics (LEFM), pioneered by Griffith [7], accurately describes significant aspects of crack
behaviour, it suffers from the presence of a stress singularity at the crack tip, rendering the model non-physical
in the “fracture process zone”, the region surrounding the crack tip. In order to model situations where individual
cracks have a large effect on the overall structural behaviour of a system such as fragmentation or dynamic crack
branching problems, researchers make use of cohesive zone models (see seminal articles such as Xu and Needleman
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[8], Zhang et al. [9] and Nguyen and Wu [10]). Cohesive zone models (CZM) regularise the LEFM stress singularity
at the crack tip by expressing a relationship between the displacement jump across a developing crack surface and the
traction that the surface can support. The total area under the traction–displacement curve represents the classical
fracture energy of LEFM [7]. In cohesive zone models the evolution of this interface is described in terms of a
cohesion variable β ∈ [0, 1], where β = 1 indicates a perfectly intact interface, and β = 0 a completely broken
interface.

Direct experimental observation of the fracture process zone is extremely difficult, due to their typically small size
(depending on the material, as small as the order of 10 nm [11]) and rapid motion. Very few direct observations
have been made [12,13], although recent work studying the cohesive zones of “frictional cracks” [14] offers a
promising path towards further direct observations. Due to this difficulty of direct observation, the properties of the
cohesive zone are typically inferred via experimental observations at a larger scale, which may require sophisticated
image analysis [15] and the inversion of finite element models [16]. It should be noted that the particular values
of the inferred parameters such as total fracture energy Gc, critical traction σc and critical length δc depend on the
exact form of the cohesive zone model chosen [11]. Some inference as to the appropriate form of the model may
be drawn by comparing back-analyses of experiments via cohesive zone models with those conducted using other
crack analysis techniques such as the coupled criterion, which characterises the initiation of the crack depending
on whether it is dominated by the stress across the incipient surface or the stored energy [17,18].

While the particular forms of cohesive zone models are arbitrary and limited only by the modeller’s imagination,
in a broad sense they may all be categorised as one of two flavours, intrinsic and extrinsic models. Intrinsic
models include an initially elastic response, with an initial strengthening of the cohesive zone as a function of
the displacement jump, before weakening due to the decohesion process [19]. As a consequence, there is an
additional length parameter, the hardening length δh , where the cohesive traction obtains its maximum value [20].
Intrinsic cohesive elements are inserted between the mesh elements before simulation, leading to straightforward
computational parallelisation [21]. However, the elasticity present in the intrinsic model has the effect of modifying
the overall elasticity of the structure, with this effect becoming more significant with a greater number of cohesive
elements. Thus, intrinsic models introduce an unwanted mesh-dependency to the problem [19]. The problem of
induced artificial compliance can be reduced by increasing the initial hardening slope of the cohesive law. However,
in quasi-static analyses, this stiffness increase results in very unstable numerical methods, while in dynamic analyses,
it results in severe restrictions on the stable time step size, rendering the method essentially unsuitable [21]. The
presence of interface elasticity also allows for the possibility of interpenetration and physically meaningless negative
displacement jumps if the two sides of the interface are pushed together [22]. Finally, we also note the conceptual
impossibility of measuring interface stiffness across a crack face before the crack exists, meaning that any stiffness
assigned in an intrinsic model must necessarily be arbitrary and not representative of a true physical property. As
such, the stiffness of the intrinsic model is often assumed to be that of the bulk when identifying parameters, and
is then taken as a given during the CZM parameter identification procedure (see e.g. [16]).

On the other hand, extrinsic models are initially rigid and hence immediately start to decohere as the displacement
jump increases [20,23]. These models do not effect the elasticity of the bulk, however, typically they are inserted
adaptively on-the-fly into finite element meshes [24], as pre-inserting the elements leads to very large computational
overheads due to each node requiring duplicates. Historically the on-the-fly insertion has meant that extrinsic
models were difficult to parallelise [25], but modern techniques have been developed that have overcome the
previous difficulties [26]. The absence of artificial stiffness in the extrinsic formulation renders it suitable for
use in dynamic analyses due to the absence of artificial compliance effects [23,27,28], but care must be taken
to ensure that the system exhibits time-continuous behaviour [29,30]. A modified Lagrangian formulation can
ensure this time-continuity [31]. While extrinsic models do not have the pathological mesh-dependency of intrinsic
models, the large number of elements required to fully resolve the cohesive zone for arbitrary crack paths has
been impractical, meaning that simulations are typically not fully converged. This issue can be at least partially
addressed by modelling cohesive zone strength via a Weibull distribution [24,32]. The use of more sophisticated
finite element techniques such as those based on the partition of unity [33], Hybrid Equilibrium Elements [34,35],
or Discontinuous Galerkin [21,36] constitutes a promising path towards truly mesh-independent results.

However, extrinsic cohesive zone models implemented on a highly-refined mesh can still suffer from issues of
ill-posedness [37]. In quasi-statics, solution jumps can appear due to the elasticity of the system storing more energy
than can be released by the cohesive zone [22]. This issue has been addressed using either sophisticated enriched
finite element schemes [38] or viscous regularisation [39], in order to ensure that the problem remains well-posed.
2
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We must also pay close attention to the unload–reload behaviour of models, particularly in cases of non-

onotonic loading e.g. repeated impacts or complex stress wave patterns, where cohesive elements may incur only
partial decohesion before being subjected to unloading and reloading. By considering the mathematical structure
detailed in [20], where by shifting the values of model parameters both intrinsic and extrinsic models may be
obtained from the same formula, we may define the notion of a “shifted intrinsic model”, where the extrinsic model
retains an underlying intrinsic mathematical structure. Typically extrinsic models indicate that after the cohesion has
decreased, the unload–reload behaviour is elastic until decohesion recommences [27,30,33–35]. Models exhibiting
this behaviour constitute shifted intrinsic models where the effective critical traction σc,e and hardening length δh
are shifted away from their initial values (σc and 0 respectively) as the cohesion β evolves. For this family of
models, the unload–reload elasticity can be approximated by E ≈ tan

(
β π2

)
. It is clear that for very small amounts

of decohesion with β ≈ 1, the elasticity of the interface is arbitrarily large and the problems of artificial compliance
inherent to intrinsic models may also arise in extrinsic models if they have the shifted intrinsic model structure.

Thus, we may conclude that an extrinsic model is the most appropriate to model crack behaviour, but special
care must be taken to avoid unphysical behaviour at the interface in both the initial loading phase, and for cases
of unloading and reloading. An extrinsic cohesive model may be naively viewed as an interface model with an
infinite initial stiffness. The correct mathematical setting to impose such a constraint is convex and variational
analysis, exploiting the techniques of mathematical programming. To this end, we turn to the field of contact
mechanics, in particular the seminal work of Moreau [40–42], who developed the mathematical framework of
non-smooth mechanics. By appropriately specifying the potential of energy and the pseudo-potential of dissipation
within the framework of convex analysis, rigorous thermodynamic formulations for a range of materials may be
developed [43–45] including unilateral constraints on the variables and their time derivatives. In particular, this
family of models has been extended to cohesive zone modelling in a series of seminal works by Frémond [46–49],
which provides a natural framework in which we present our models. The pioneering work of Frémond has already
been extended in various directions for intrinsic cohesive zone models [22,39,50–53] but has been barely used
for extrinsic models other than those of Jean et al. [54] and Talon and Curnier [55]. We note that in the latter
formulation, the model does not suffer from the issues raised by the shifted intrinsic model structure, unlike those
models developed following Camacho and Ortiz [27] (amongst others).

An alternative approach where extrinsic cohesive models appear naturally is the variational approach to
fracture [56–58]. The equilibrium of a fractured system is formulated as an energy-minimisation principle. The
constitutive law for cohesion is defined by the surface energy that is created when the fracture progresses, as a
concave function of the displacement jump. This surface energy converges asymptotically to the fracture toughness
when the interface is completely broken. The derivative of the surface energy at the origin with respect to the
displacement jump defines the critical strength of the interface. The constitutive law is completed with a law that
accounts for the irreversibility of the process, and is implemented in an incremental form of the energy minimisation.
As in the classical cohesive theory of fracture, there is no initial stiffness. The optimality conditions (or stationarity
conditions if we prefer) yield the definition of an extrinsic cohesive zone model. The theory, in quasi-statics,
demonstrates that some energy jumps are possible in specific cases that match those observed in the classical
formulation of cohesive zone models.

Following this original idea, numerical methods have been designed to simulate fracture problems by combining
energy minimisation and extrinsic cohesive zone models. In one of the most advanced works [59], the unilateral
contact condition is added by means of an augmented Lagrangian that helps to retrieve convexity at the price
of needing to correctly determine the exact penalty parameter. To model this irreversibility process, the model
developed in [55] is used. A finite element discretisation based on a mortar-like approach is solved by a non-smooth
Newton method. A time-stepping is then implemented using a solver based on an alternate minimisation fixed
point. In [60], a mathematical analysis of a similar model with mixed elements is proposed. Although the discrete
minimisation is non-convex, the convergence study of numerical methods such as Uzawa and non-smooth Newton
methods is performed. In [61,62], a very similar approach is developed, taking into account the inertia effects in
discrete time and using modern optimisation methods. Nevertheless, the irreversibility process is modelled in the
same fashion as in [27] and hence leads to the same issues. The minimisation principle is based on the non-convex
energy which includes the constraints (unilateral contact, irreversibility) using non-smooth and non-differentiable
functions.

To situate our work with respect to the variational approach to fracture, we note that our differences mainly lie in
the methodology, which leads to rather different properties for the numerical scheme. In our work, we start from a
3
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consistent mechanical model and use the laws of thermodynamics in a non-smooth setting. This leads to variational
inequalities or complementarity problems that can accommodate a wide variety of models, but these problem
formulations are not necessarily equivalent to the optimality conditions of an optimisation problem. In other words,
the variational inequality is not necessarily the optimality condition of a minimisation problem. In some structured
cases, variational inequalities and complementarity problems can be recast into (possibly convex) optimisation
problems, but their mechanical interpretation may be difficult. To place our framework in a minimisation setting
that can play the role of a mechanical principle, further investigations are needed, which are beyond the scope of
the paper.

To complete this brief review of the literature, the closest work to our approach is developed in [63], where an
xtrinsic cohesive zone model in dynamics with unilateral constraints is proposed. Two models of irreversilibity are
sed. One is similar to the Camacho and Ortiz [27] model and the other to the Talon and Curnier [55] model. Using
n explicit evaluation of some interface variables, they are able to show that the discrete problem is well-posed at
ach time step given some mild assumptions on the time step and the mesh size. Discrete energy balances are also
rovided, but they are not directly related to the fracture energy. The method has been extended in [64] in the
ontext of the extended finite element method to enable the developments of cracks not only at the boundary of the
esh elements, and in [65] in the context of a variational discrete element method. However, the proposed scheme

oes not take into account the possible appearance of percussions due to velocity jumps. This latter discrete property
s important when dealing with finite masses (e.g rigid bodies, the discrete element method, slender structures or
pace-discretised structures). The aim of our paper is to bridge this gap.

ovelty of the contribution and outline of the article. The novelty of our work is that we present the formulation
f an extrinsic cohesive zone model that provides us with:

1. a formulation based on non-smooth thermo-mechanics principles that take into account the effects of inertia
and the inequality constraints on state variables and their time derivatives (unilateral contact, irreversibility)
with a simple loading/unloading behaviour related to the irreversibility of the process which does not have
the issues of the shifted intrinsic model structure or the problem of infinite stiffness (Section 2), and

2. a formulation of the non-smooth dynamics in a finite-dimensional setting in terms of differential measures that
takes into account the effect of inertia and the possibility of discontinuities in the velocity and the associated
percussion together with an impact law (Section 3),

nd a numerical procedure in Section 4 that features the following properties:

1. an implicit time-stepping scheme consistent with the non-smooth dynamics based on the Moreau–Jean
scheme, that respects the energy balance in discrete time, and which provides us with a stable scheme with
quite large time steps,

2. a complementarity problem formulation for the space and time discretised problem with a proof of well-
posedness (existence and uniqueness of solutions) that solves all of the constraints in an implicit manner; in
that way, the extrinsic cohesive model is satisfied at each time step while avoiding the solution jumps that
occur in quasi-statics when the cohesive model is not regularised by viscous or second gradient techniques,
and

3. a formulation as a monolithic complementarity problem allowing us to exploit the efficient algorithms that
have been developed for this class of problems in the mathematical programming literature.

inally, we demonstrate the interest of the approach in Section 5 by applying the model to some pertinent example
ystems and compare the results with those obtained by other workers.

. Formulation of extrinsic cohesive zone models with contact

In this section, we define the state variables of the system, obtain the equilibrium and boundary conditions via the
rinciple of virtual power, specify the constitutive model, and demonstrate its behaviour with an analytic example.

.1. State variables, powers and principle of virtual power

We start by defining our system. Let us consider a body defined by Ω ∈ Rd , d ∈ [[1, 3]]. The vector x defines
the current position and X the initial position, u(x) the displacement and v(x) = u̇(x) the velocity. The definition
4
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of the displacement jump at the interface is not trivial in practice. In this work, we consider that, initially, the
material is undamaged. At a point x ∈ Ω , x ∈ Rd , the displacement u(x) and the velocity v(x) are continuously

ifferentiable functions of x. If a crack occurs and an interface is created, two material points xl and xr are defined
by splitting the bodies assuming that they correspond to the material point X initially. We choose to denote xl by x.

he displacement jump is defined by the difference in the position of the material point that was at X initially, with
espect to x and xr , that is [[u(x, xr )]] = u(xr ) − u(x). We also assume that we are able to define an orthonormal
ocal frame at any point x of the interface defined by (x, n, t) where n ∈ Rd is the normal unit vector from x

towards xr and the vector t = [t1, t2] ∈ Rd×(d−1) completes the frame. In this work, we consider only the normal
displacement (jump), defined by uN(x, xr ) = [[u(x, xr )]] · n ∈ R. The relative velocity (jump in space) is defined as
vN = u̇N. Before the creation of the interface, we assume that uN and vN vanish whatever the arbitrary definition
of the local frame since u and v are continuous.

To describe the state of the cohesion we introduce the cohesion variable β(x) ∈ [0, 1], using the notation
introduced by Frémond for describing the intensity of cohesion, or the proportion of active bonds. For a point
x on the interface, the power of the cohesion for a surface Γ is defined by

Pcoh =

∫
Γ

β̇A dx, (2)

introducing A which is the dual force (driving force) associated to β. In the same way, the power of contact is
given by

Pcon =

∫
Γ

vNrN dx, (3)

introducing rN as the normal reaction force related to the stress σ (x) at the interface by rN = −σ · n · n.
For the material in Ω , the power of the external, internal and inertial forces are respectively given by

Pext =

∫
Ω

v · f dx −

∫
ΓN

v · τ dx −

∫
Γ

β̇Θ dx, (4)

Pint = −

∫
Ω

σ : ε̇ dx +

∫
Γ

vNrN dx +

∫
Γ

β̇A dx, (5)

Pacc =

∫
Ω

ρv · v̇ dx, (6)

where f is the body force in Ω , τ is the surface traction on ΓN (i.e. where the Neumann boundary condition is
applied on the surface), Θ is an external force that does work on the cohesion (such as may arise from thermal or
chemical effects) that is taken as identically zero in this work, ε is the strain in Ω , ρ is the density and v̇ is the
acceleration.

The principle of virtual power states that for any virtual velocities v̄, ˙̄ε and ˙̄β, we have

P̄acc = P̄ext + P̄int,∫
Ω

ρv̄ · v̇ dx =

∫
Ω

v̄ · f dx −

∫
ΓN

v̄ · τ dx −

∫
Γ

˙̄βΘ dx −

∫
Ω

σ : ˙̄ε dx +

∫
Γ

v̄NrN dx +

∫
Γ

˙̄βA dx . (7)

or a rigorous mathematical setting of this principle, we refer to Frémond [46]. Using sufficient smoothness
ssumptions on the fields, this leads by localisation to the set of equations describing the equilibrium and boundary
onditions of the system:⎧⎪⎪⎨⎪⎪⎩

∇ · σ + f = ρv̇ in Ω ,
A = Θ = 0 on Γ ,

τ = σ · n on ΓN ,

rN = −σ · n · n on Γ .

(8)

.2. A non-smooth thermo-mechanics potential in the normal direction

Now, we specify our constitutive model via the appropriate specification of an energy potential, and a dissipation
seudo-potential. We will also show that the system can be written in terms of complementarity relations, and use

his to derive an expression for the energy balance.

5
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Free energy and reversible state laws. The free energy Ψ of the system is the sum of the free energy in the bulk
ith that of the surface, that is

Ψ =

∫
Ω

Ψe(ε) dx +

∫
Γ

Ψs(uN, β) dx, (9)

here Ψe and Ψs are the volume and surface free energies. In this work, we assume all strain is elastic. Firstly, the
tresses may be obtained by assuming a classical linear elastic potential for the bulk:

Ψe(ε) =
1
2
ε : E : ε, (10)

σ (ε) =
∂Ψe(ε)
∂ε

= E : ε, (11)

here E is a fourth order stiffness tensor. The stress-like variables are similarly derived from the surface potential
y {

−r r
N ∈ ∂uNΨs(uN, β),

−Ar
∈ ∂βΨs(uN, β),

(12)

here r r
N stands for the reversible part of the normal reaction force, and ∂uN and ∂β indicate the subdifferentials

ith respect to uN and β of a convex (or concave) but non-smooth potential [47]. The first assumption in our model
s that the displacement is constrained to be positive, uN ⩾ 0, which is enforced as a unilateral constraint, and the
ohesion variable constraints are 0 ⩽ β ⩽ 1. This yields the possible form of the surface free energy

Ψs(uN, β) = ψ(uN, β) + IR+
(uN) + I[0,1](β), (13)

here IC is the indicator function of a convex set C . To obtain an extrinsic CZM, the tangent stiffness of the
odel when uN ⩾ 0 must vanish. In other words, the derivative of ψ(uN, β) with respect to uN must be constant,

.e. ∂2ψ
∂uN2 = 0. The simplest choice for the free energy is:

Ψs(uN, β) = βσcuN + w f (β) + IR+
(uN) + I[0,1](β), (14)

here

• σc > 0 is the critical traction,
• w > 0 is the surface free energy which is released by decohesion, and
• f (β) is a function that enables us to parametrise the evolution of β in the decohesion process.

he state laws are deduced by applying (12) to (14):{
−(r r

N + βσc) ∈ ∂IR+
(uN),

−(Ar
+ σcuN + w f ′(β)) ∈ ∂I[0,1](β).

(15)

he first law in (15) is a shifted Signorini condition by the value of the cohesive force defined by rc
N(β) = βσc.

his can be written in terms of a complementarity relation:

0 ⩽ r r
N + rc

N(β) ⊥ uN ⩾ 0. (16)

he surface free energy Ψs is not a convex function of its arguments (uN, β) since the determinant of its Hessian
atrix is equal to −σc

2. Nevertheless Ψs is convex with respect to uN since it is linear. By choosing f ′′(β) ⩾ 0,
he convexity with respect to β is ensured. The smooth part of the free energy in (14) is composed of two terms.
he first term βσcuN is homogeneous to a potential energy given by the cohesive force βσc in the displacement
eld uN. The second term w f (β) is the surface free energy released by decohesion for a given β. Some further
odelling assumptions may also be specified on the function f . For an intact interface (β = 1), we may assume

hat f (1) = 0 such that the released free energy vanishes. For a broken interface (β = 0), we may assume that the
ohesive free energy w has completely been released then f (0) = 1. Furthermore, we may also assume a monotone
elease for the cohesion free energy with β, that f ′(β) ⩽ 0. This choice is consistent with the convexity of f if
he minimum is attained for β = 1. In the following, these assumptions will be satisfied by the triangle law we

ropose.

6



N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545

m
s
a
v
i
p

f
y

I

S

u
A
o

L
o

T
l

E

I
w

Dissipation pseudo-potential and irreversible processes. To define the irreversibility of the process of decohesion
in a way consistent with the second law of thermodynamics, the dissipation function, defined for an isothermal
process as

D = −Pint −

∫
Ω

Ψ̇e(ε) dx −

∫
Γ

Ψ̇s(uN, β), (17)

ust be non-negative. The computation of the time derivative of the non-smooth and non-convex potential requires
ome care. The functions uN(t) and β(t) are assumed to be absolutely continuous, and hence they have a derivative
lmost everywhere but not necessarily at any given point. Since absolutely continuous functions are of bounded
ariations, their left and right derivatives exist. Assuming Ψ̇s is convex in uN and in β separately, and Ψ̇s(uN, β)
s also an absolutely continuous function for uN ⩾ 0, β ∈ [0, 1], a result given by Frémond [47, Appendix A.1.9]
rovides us with the following inequality:

Ψ̇s(uN, β) ⩽ −vNr r
N − β̇Ar, (18)

or any r r
N and β̇ that satisfies the inclusions (15).1 Substituting this inequality in the definition of the dissipation

ields,

D ⩾
∫
Ω

σ : ε̇ dx −

∫
Γ

(
vNrN + β̇A

)
dx −

∫
Ω

∂Ψe(ε)
∂ε

ε̇ dx +

∫
Γ

(
vNr r

N + β̇Ar) dx . (19)

n (19), the terms integrated over Ω cancel out. We then obtain

D ⩾
∫
Γ

(
−vNrN − β̇A + vNr r

N + β̇Ar) dx . (20)

ince we want to ensure that D ⩾ 0, we will assume that

−vNrN − β̇A + vNr r
N + β̇Ar ⩾ 0, or equivalently, − vNr ir

N − β̇Air ⩾ 0, (21)

sing the standard decomposition rN = r r
N+r ir

N and A = Ar
+ Air for the irreversible parts of the stress-like variables.

standard way to ensure this inequality is to postulate the existence of a proper closed convex pseudo-potential2

f dissipation Φ(vN, β̇) such that the dissipation process is governed by{
−r ir

N ∈ ∂vNΦ(vN, β̇),
−Air

∈ ∂β̇Φ(vN, β̇).
(22)

et us assume that the dissipation process is only governed by the rate of β. We can choose for the pseudo-potential
f dissipation

Φ(vN, β̇) = IR−
(β̇). (23)

his model of dissipation only imposes that the evolution of β must decrease with time, i.e. β̇ ⩽ 0. The dissipative
aws are thus{

−r ir
N = 0,

−Air
∈ ∂IR−

(β̇).
(24)

quivalently, the last line of (24) can be written as

β̇ ∈ ∂IR+
(−Air). (25)

n this form, we can easily interpret that Air is the force that drives the evolution of β̇. Given that in (8), A = 0,
e must have Ar

= −Air, and thus

β̇ ∈ ∂IR+
(Ar). (26)

1 To avoid complicated notation, we do not mention left or right derivatives.
2 a closed convex function is a convex function that is lower-semi continuous, or equivalently its epigraph is a closed convex set.
7
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Remark 1. The choice of the pseudo-potential (23) results in a model that is rate independent. A rate dependency
can be easily added here by considering a model that is non-linear in the rates of the dissipative variables, such as

Φ(vN, β̇) =
c

p + 1
(−β̇)p+1

+ IR−
(β̇), (27)

where the coefficient c is a viscosity and p a given parameter for the non-linear viscosity [22].

Complete extrinsic cohesive zone model. Noting that rN = r r
N, the complete model of the interface is given by⎧⎪⎨⎪⎩

β̇ ∈ ∂IR+
(Ar),

−(rN + βσc) ∈ ∂IR+
(uN),

−(w f ′(β) + σcuN + Ar) ∈ ∂I[0,1](β).
(28)

e highlight that as r ir
N = 0 and (26) implies one of β̇ or Ar is always zero, (21) is also zero. While the process of

ecohesion and surface creation is irreversible, it is also non-dissipative in the sense that −vNr ir
N − β̇Air

= 0.

ariational inequality and complementarity problem. The system can be formulated as an evolution variational
nequality by

− F(β̇, β, uN, rN, Ar) ∈ NR+×R+×[0,1]

⎛⎝⎡⎣ Ar

uN
β

⎤⎦⎞⎠ , with F(β̇, β, uN, rN, Ar) =

⎡⎣ −β̇

rN + βσc

w f ′(β) + σcuN + Ar

⎤⎦ . (29)

ntroducing slack variables µ, λ, and ν, this system can also be formalised using normal cones to convex sets as{
β̇ = −λ, w f ′(β) + σcuN + Ar

= µ, rN + βσc = ν,

−ν ∈ NR+
(uN), −µ ∈ N[0,1](β), −λ ∈ NR+

(Ar).
(30)

sing the definition of a normal cone to a convex set defined by simple bounds, this model can be written with
omplementarity conditions as a Mixed Complementarity System (MCS):{

β̇ = −λ, w f ′(β) + σcuN + Ar
= µ, rN + βσc = ν, µ = µ+ − µ−,

0 ⩽ ν ⊥ uN ⩾ 0, 0 ⩽ µ+ ⊥ β ⩾ 0, 0 ⩽ µ− ⊥ 1 − β ⩾ 0, 0 ⩽ λ ⊥ Ar ⩾ 0.
(31)

nergy balance. With the chosen constitutive laws, the power of internal forces can be written as

Pint = −

∫
Ω

ε : E : ε̇ dx +

∫
Γ

rNvN dx +

∫
Γ

Aβ̇ dx,

= −
d
dt

(∫
Ω

ε : E : ε dx
)

+

∫
Γ

(
rNvN + Aβ̇

)
dx,

= −U̇ + Ps,int, (32)

where U is the potential elastic strain energy, and Ps,int the power of surface internal forces defined by Ps,int =∫
Γ

(
rNvN + Aβ̇

)
dx . Using the constitutive laws (30), we have

0 = vNr ir
N + β̇Air,

= vNrN + β̇A − vN(ν − βσc) − β̇(µ− σcuN − w f ′(β)). (33)

Since −ν ∈ NR+
(uN) and −µ ∈ N[0,1](β), we have νvN = 0 and µβ̇ = 0 almost everywhere, the expression (33)

an be simplified to

0 = vNrN + β̇A + vNβσc + β̇(σcuN − w f ′(β)),

= vNrN + β̇A + vN
∂ψ

∂uN
+ β̇

∂ψ

∂β
,

= vNrN + β̇A + ψ̇. (34)

e deduce that the power of surface internal forces is equal, almost everywhere, to the change of the smooth part
f the free energy

Ps,int = −

∫
ψ̇ dx =

∫
βσcvN dx . (35)
Γ Γ

8
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Using the principle of virtual power for the actual velocities of the system, the energy balance, K̇ = Pext + Pint is
lmost everywhere

K̇ + U̇ +

∫
Γ

ψ̇ dx = Pext, (36)

here K is the kinetic energy. The first law of thermodynamics in an isothermal setting results in the energy balance
˙ + Ė = Pext, where E is the internal energy. A simple identification shows that

Ė = −Pint =

∫
Γ

ψ̇ dx + U̇ . (37)

ince Ψs = ψ for all admissible uN, β, we obtain that the fracture energy is given by

G =

∫ ∫
Γ

βσcvN dx dt = −

∫ ∫
Γ

ψ̇ dx dt = −

∫ ∫
Γ

Ψ̇s dx dt. (38)

he following incremental energy balance can be then written as

∆K + ∆U + ∆G =

∫ t2

t1

Pext dt, and ∆E = ∆U + ∆G. (39)

emark 2. For an evolution from an intact interface with uN = 0, β = 1 to a broken interface β = 0 on Γ , we
et from (38) that ∆G =

∫
Γ w dx .

.3. A linear evolution of the cohesion: triangle law

We now specify the exact form of the surface potential. We require that when the surface does not exist, i.e.
N = 0 and β = 1, Ψs = 0, and that when the surface is fully decohered, i.e. β = 0, Ψs = w. We assume that this
ecohesion is complete at a critical length δc > 0. Choosing⎧⎨⎩w =

σcδc

2
,

f (β) = (β − 1)2,
(40)

ulfils the required conditions for the energy while ensuring that the potential remains convex in β. While β ∈ [0, 1]
nd β̇ < 0, the second term in (31) gives β = 1 −

uN
δc

. Substituting this displacement-cohesion law into the free
energy, we get:

Ψs(uN) = σcuN −
σcuN

2

2δc
+ IR+

(uN) + I[0,1]

(
1 −

uN

δc

)
. (41)

he linear evolution of β, obtained as a consequence of (40), is depicted in Fig. 1.

Fig. 1. (a) The shape of the surface potential Ψs with respect to β. (b) The consequent linear evolution of β with uN. (c) The shape of
the surface potential Ψs with respect to uN, where the initial slope is equivalent to the value of σc , and the final value is w.

The model (30) is now specified for a triangle law by{
β̇ = −λ, σc(δc(β − 1) + uN) + Ar

= µ, rN + βσc = ν,
r (42)
−ν ∈ NR+
(uN), −µ ∈ N[0,1](β), −λ ∈ NR+

(A ).
9
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Since β̇ is constrained to be non-positive, a smooth evolution of β starting with the initial value β = 1 will result
in β being less than 1. We will show that in this case the µ− condition written in (31) is redundant and can be
dropped from the formulation. Let us assume that β = 1 and µ− > 0. As β > 0, µ+ = 0 and µ = −µ−. The
second equation of (30) is then

σcuN + Ar
= −µ−. (43)

As Ar and uN are both constrained to be positive, (43) implies that µ− ⩽ 0, which contradicts our assumption.
We conclude that µ− vanishes. Thus, the condition is redundant and is dropped from the model in the following,
allowing us to write µ = µ+ and −µ ∈ NR+

(β).
This model in (42) can be written as a Mixed Linear Complementarity Systems (MLCS) given by{

β̇ = −λ, σc(δc(β − 1) + uN) + Ar
= µ, rN + βσc = ν,

0 ⩽ ν ⊥ uN ⩾ 0, 0 ⩽ µ ⊥ β ⩾ 0, 0 ⩽ λ ⊥ Ar ⩾ 0.
(44)

Analytical expressions for an experiment with a given driven displacement. Let us assume for a while that uN is a
given function of time t given by the following piecewise linear function:

uN(t) =

⎧⎪⎨⎪⎩
1
2 t for 0 ⩽ t < 1,

1 −
1
2 t for 1 ⩽ t < 2,

−1 +
1
2 t for 2 ⩽ t,

(45)

here uN is measured in mm and t in ms, and we choose δc = 1 mm and σc =
1
2 MPa. The time integration

of the model described in (44) leads to the following piecewise linear response. We assume that the evolution is
continuous.

• First loading phase 0 ⩽ t < 1
Since uN(t) > 0 for t > 0, the reaction force is rN(t) = −β(t)σc. Let us assume that β(t) > 0 for
t ∈ [0, T1). We deduce that µ(t) = 0. Let us note that Ar(t0) = −σc(δc(β0 − 1) + uN(0)) = 0. Let us
assume that λ(t) = 0, t ∈ [0, ϵ], ϵ > 0 or equivalently β̇(t) = 0, t ∈ [0, ϵ], ϵ > 0. In that case, we get
Ȧr(t) = −σcvN(t) < 0 and then Ar(ϵ) < 0, for ϵ > 0 which is impossible. Let us try with β̇(t) < 0, then
Ar(t) = 0 and β(t) = 1 −

uN(t)
δc

and β̇(t) = −
vN(t)
δc

< 0. Since β(1) = 1 −
1

2δc
=

1
2 > 0, this is the only

consistent solution for t ∈ [0, 1).
• Unloading phase 1 ⩽ t < 2

Let us assume that β(t) > 0 for t ∈ [1, 2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [1, 2) or equivalently
β̇(t) = 0. In that case, we get Ȧr(t) = −σcvN(t) > 0 and then Ar(t) =

1
4 (t − 1) > 0. This solution satisfies

the complementarity condition up to t = 2.
• Second loading phase 2 ⩽ t

Let us assume that β(t) > 0 for t ∈ [T1, T2) and µ(t) = 0. Let us assume that λ(t) = 0, t ∈ [2, 2 + ϵ], ϵ > 0
or equivalently β̇(t) = 0. In that case, we get Ȧr(t) = −σcvN(t) < 0 and then Ar(t) = −

1
2σc(t − 2) + Ar(2) =

−
1
4 (t − 3) which is positive for t < 3. For t ⩾ 3, the only possible solution of the complementarity leads to

β̇(t) = −
vN(t)
δc

< 0 and Ar(t) = 0. The cohesion variable β is then β(t) = −
1
2 (t − 3) +

1
2 which is positive for

t < 4. For t ⩾ 4, the solution is β(t) = 0 and µ(t) =
1
2 (uN(t) − 1).

he solution of this experiment is depicted in Fig. 2.

emark 3. Let us note that we need to derive the second term of (44) to get a closed form solution. This means
hat the evolution variational inequality is of relative degree at least 1.

We observe in Fig. 2 that the model behaves correctly, with β only changing as the crack opens vN > 0, and no
hange in β during reloading until uN exceeds its previous maximum value. Once the interface cohesion is fully
liminated we observe no further change in β.

emark 4. Other types of smoother cohesion evolution behaviours are possible, for examples laws modelled after
hat proposed in Michel and Suquet [66].
10
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Fig. 2. Illustration of the extrinsic cohesize law with a linear evolution of cohesion. (a) The displacement uN as a function of time t . (b)
The cohesion β as a function of time t . (c) The cohesion β as a function of displacement uN. (d) The thermodynamic driving force Ar as
a function of time. (e) The slack variable µ as a function of time t . (f) The slack variable λ as a function of time t .

Remark 5. We note in particular that other unloading behaviours are possible within the non-smooth mechanics
framework. Rather than the horizontal unload–reload behaviour exhibited in our model, Talon and Curnier [55]
proposed a model where the unload–reload behaviour is vertical. This behaviour arises as they treat adhesion as a
phenomenon featuring thin filaments that immediately crumple under unloading, and thus cannot exert any force
whatsoever. However, we view cohesion as the material providing a force that acts to close the crack, and unloading
changes nothing about the underlying material state that would cause this force to change. We note that these two
views are not mutually exclusive, as they model subtly different phenomena (adhesion vs. cohesion).

3. Non-smooth elasto-dynamics of finite-dimensional systems

We now extend our model to consider bodies with finite numbers of degrees of freedom, to which are attached
masses, stiffnesses and external forces. These degrees of freedom may or may not be associated with cohesive
zones. We also consider the dynamic interaction of multiple bodies via the formulation of an impact law for the
system.

3.1. Finite-dimensional systems via space-discretisation

Let us consider a finite-dimensional model of a linear elastic mechanical system, potentially after a space-
discretisation by the finite element method. Let us note by u ∈ Rn the displacements of the system and v = u̇
the velocity. Starting from the principle of virtual power (7), the equilibrium equation can be written as

M v̇ + K u = F; u̇ = v, (46)

where M ∈ Rn×n is the mass matrix, assumed to be symmetric positive definite, K ∈ Rn×n is the structural
n
symmetric semi-definite positive stiffness matrix and F ∈ R is the external applied force.

11



N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545

I

w
d
c

3

m
n
e
a

w
d

T
c

W
M

w

w

R
l
f
(

Let us now add that the cohesive zone is applied on a finite set of cohesive contact points labelled by α ∈ [[1,m]].
n the case of small perturbations, the local displacements at contact uN = col(uαN, α ∈ [[1,m]]) are related to the

displacements u by a linear relation written as

uN = Hu + b, (47)

where H ∈ Rm×n and b ∈ Rm . Collecting all variables at contact in the same way (x = col(xα, α ∈ [[1,m]])), the
equilibrium equations of the system are given by⎧⎪⎪⎨⎪⎪⎩

M v̇ + K u = F + H⊤SrN, u̇ = v, β̇ = −λ,

uN = Hu + b, rc
N = βσc,

w f ′(β) + σcuN + Ar
= µ, rN + rc

N = ν,

−ν ∈ NR+
(uN), −µ ∈ NR+

(β), −λ ∈ NR+
(Ar),

(48)

here S ∈ Rm×m is a diagonal matrix that contains the tributary area of each cohesive zone node after space-
iscretisation of the interface. For the sake of simplicity, we assume that σc, w and f do not depend on α, but this
an be straightforwardly extended.

.2. Non-smooth dynamics and impacts

In the presence of unilateral contacts, solutions of finite-dimensional dynamical systems with a regular mass
atrix (with finite masses associated with all degrees of freedom) exhibit jumps in velocities. In this context, the

on-smooth dynamics must be carefully treated to obtain a consistent time-discretisation [67]. To this end, the
quations of motion of a discrete (finite-dimensional) mechanical system, and the relation with contact variables
re written in terms of differential measures by{

M dv + K u dt = F dt + H⊤ diN,

u̇ = v,
(49)

here dv is the differential measure associated with the velocity v, assumed to be a bounded value function, and
iN is the measure of the reaction at the contact. For the cohesive zone model, several further assumptions are made:

• We assume that the reaction due to cohesion force rc
N is bounded. In other words, the corresponding impulse

does not contain atoms (Dirac measures);
• We assume that β and Ar are absolutely continuous functions of time. Since the evolution of the cohesion

variable is governed by the displacement uN that is assumed to be absolutely continuous in time, we assume
the same regularity for β and Ar.

he reaction at the contact can then be decomposed into the “contact impulse” dpN, and the contribution of the
ohesive forces by

diN = S dpN − Sσcβ dt. (50)

hen the interface is completely broken, we want to retrieve a contact law with impact. We choose in this work
oreau’s impact law

0 ⩽ dpN ⊥ v+

N + ev−

N ⩾ 0 if uN ⩽ 0, else dpN = 0, (51)

here e is the Newton coefficient of restitution. In terms of normal cone inclusion, this is equivalent to

− dpN ∈ NTR+
(uN)(v+

N + ev−

N ), or equivalently, − ( diN + Sσcβ dt) ∈ NTR+
(uN)(v+

N + ev−

N ), (52)

here TR+
is the tangent cone of the set R+.

emark 6. The inclusion − dpN ∈ NTR+
(uN)(v+

N + ev−

N ) deals with the impact and the constraints at the velocity
evel. When uN(t) = 0, this inclusion imposes that v+

N (t) ⩾ 0 and then uN(t + ϵ) ⩾ 0 for ϵ > 0. This result is
ormalised in Moreau’s viability lemma [67]. The inequality uN ⩾ 0 is not explicitly written since it is satisfied if

51) is satisfied and uN(t0) ⩾ 0.

12
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Thus, we can write the full set of equations for the system as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M dv + K u dt = F dt + H⊤(S dpN − Sσcβ dt), u̇ = v, β̇ = −λ,

uN = Hu + b, vN = Hv, w f ′(β) + σcuN + Ar
= µ,

−µ ∈ NR+
(β),

−λ ∈ NR+
(Ar),

− dpN ∈ NTR+(uN) (v
+

N + ev−

N ).

(53)

n complementarity terms, we write the model as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M dv + K u dt = F dt + H⊤(S dpN − Sσcβ dt),
u̇ = v,

β̇ = −λ,

uN = Hu + b,
vN = Hv,
w f ′(β) + σcuN + Ar

= µ,

0 ⩽ µ ⊥ β ⩾ 0,
0 ⩽ Ar

⊥ λ ⩾ 0,
0 ⩽ dpN ⊥ v+

N + ev−

N ⩾ 0 if uN ⩽ 0, else dpN = 0.

(54)

he formulation of the dynamics of the problem with impact and a cohesive zone model is rather different from what
s proposed in [22]. In (53), the cohesion impulse measure −σc Sβ dt is assumed to have only a density with respect
o the Lebesgue measure. Furthermore, it is decoupled from the contact impulse measure dpN in the formulation
f the constitutive laws of the interface. In other words, the cohesive reaction force is driven by uN and the contact
mpulse measure by v+

N + ev−

N .

. Numerical time integration

We now specify the time-discretisation of the system, and show that it can be rearranged to a linear complemen-
arity problem. We then demonstrate that this problem is well-posed, and that the resulting discrete energy balance
s dissipative.

.1. Principles of the time integration scheme

The time-integration scheme is based on the same principle as the Moreau–Jean scheme [67–70] for contact
ynamics. For the impulsive terms, the measure of the time interval (k, k + 1] is kept as a primary unknown:

pN,k,k+1 ≈ dpN((k, k + 1]) =

∫
(k,k+1]

dpN and iN,k,k+1 ≈ diN((k, k + 1]) =

∫
(k,k+1]

diN. (55)

All the continuous or bounded value terms are approximated with a θ -method by∫ tk+1

tk
x(t) dt ≈ hxk+θ , (56)

using the notation xk+θ = θxk + (1 − θ )xk+1 with θ ∈ [0, 1]. For the cohesive reaction force that is assumed to be
bounded, we have∫

(k,k+1]
diN = S

∫
(k,k+1]

dpN − S
∫ tk+1

tk
σcβ dt, (57)

that is approximated by

iN,k,k+1 = SpN,k,k+1 − hσc Sβk+θ . (58)

The last equation of (54) is discretised as follows:
0 ⩽ pN,k,k+1 ⊥ vN,k+1 + evN,k ⩾ 0 if ũN,k ⩽ 0, else pN,k,k+1 = 0, (59)

13
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where a conditional statement determining whether contact occurs is defined by an approximation of the displace-
ment usually defined as:

ũn,k = uN,k +
h
2
vN,k . (60)

n the following, we consider the index set Ik = {α, ũαN,k ⩽ 0} and the following compact notation pN,k,k+1 =

col(pαN,k,k+1, α ∈ Ik), vN,k+1 = col(vαN,k+1, α ∈ Ik), H̄ = row(HIα•, α ∈ Ik) = HIα•. Following this principle, the
ime-stepping scheme is written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(vk+1 − vk) + hK uk+θ = hFk+θ − hσc H⊤Sβk+θ + H̄⊤SpN,k,k+1,

uk+1 = uk + hvk+θ ,

βk+1 − βk = −hλk+1,

uN,k+1 = Huk+1 + bk+1,

vN,k+1 = H̄vk+1,

w f ′(βk+1) + σcuN,k+1 + Ar
k+1 = µk+1,

0 ⩽ βk+1 ⊥ µk+1 ⩾ 0,
0 ⩽ Ar

k+1 ⊥ λk+1 ⩾ 0,
0 ⩽ pN,k,k+1 ⊥ vN,k+1 + evN,k ⩾ 0.

(61)

he problem (61) amounts to solving a special type of finite-dimensional variational inequality at each time step,
amely a Mixed Complementarity Problem.

iscrete LCP for the triangular law. The only non-linear term in the formulation of the complementarity system
s due to f ′. In the following, we show that if f ′ is linear, the problem (61) reduces to a Linear Complementarity
ystem LCP(L , q) defined by{

w = Lz + q,
0 ⩽ w ⊥ z ⩾ 0.

(62)

ubstituting the triangle law into (61), we finally obtain the discretisation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(vk+1 − vk) + hK uk+θ = hFk+θ − hσc H⊤Sβk+θ + H̄⊤SpN,k,k+1,

uk+1 = uk + hvk+θ ,

βk+1 − βk = −hλk+1,

uN,k+1 = Huk+1 + bk+1,

vN,k+1 = H̄vk+1,

σcδc(βk+1 − 1) + σcuN,k+1 + Ar
k+1 = µk+1,

0 ⩽ βk+1 ⊥ µk+1 ⩾ 0,
0 ⩽ Ar

k+1 ⊥ λk+1 ⩾ 0,
0 ⩽ pN,k,k+1 ⊥ vN,k+1 + evN,k ⩾ 0.

(63)

Now, if we expand the first line with the appropriate θ -method substitutions, we arrive at

M(vk+1 − vk) + hK (uk + hθ [(1 − θ )vk + θvk+1]) =h [(1 − θ )Fk + θFk+1] − hσc H⊤S [(1 − θ )βk + θβk+1]

+ H̄⊤SpN,k,k+1. (64)

We denote the augmented mass matrix as M̂ = M + h2θ2 K and the free impulse (without the contribution of the
cohesive zone model) îk,k+1 = Mvk − hK (uk + hθ (1 − θ )vk)+ h [(1 − θ )Fk + θFk+1]. Thus, the velocities can be

etermined by

vk+1 = M̂−1
[
îk,k+1 − hσc H⊤S [(1 − θ )βk + θβk+1] + H̄⊤SpN,k,k+1

]
, (65)

and then

vN,k+1 = H̄ M̂−1 îk,k+1 − hσc H̄ M̂−1 H⊤S [(1 − θ )βk + θβk+1] + H̄ M̂−1 H̄⊤SpN,k,k+1,

= H̄ M̂−1 îk,k+1 + hσcV S (θhλk+1 − βk)+ W SpN,k,k+1, (66)

where W = H̄ M̂−1 H̄⊤ is the Delassus matrix reduced to active contacts and V = H̄ M̂−1 H⊤. When necessary, we
ˆ ˆ
modify the augmented mass matrix M and the free impulse i to take into account Dirichlet boundary conditions.

14
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In the same way as the velocity, we expand Ar
k+1 = µk+1 − σcδc(βk+1 − 1) − σcuN,k+1 where 1 represents a vector

of ones, using the expression of uN,k+1 for all cohesive points:

uN,k+1 = uN,k + h(1 − θ )Hvk + hθHvk+1 + bk+1,

= uN,k + h(1 − θ )Hvk + hθH M̂−1
[
îk,k+1 + hσc H⊤S (θhλk+1 − βk)+ H̄⊤SpN,k,k+1

]
+ bk+1,

= h2θ2σcU Shλk+1 + hθV ⊤SpN,k,k+1 + uN,k + h(1 − θ )Hvk + hθH M̂−1 îk,k+1 − h2θσcU Sβk + bk+1,

(67)

where U = H M̂−1 H⊤ is the complete Delassus matrix. We obtain

Ar
k+1 = µk+1 + σc(δc I − h2θ2σcU S)hλk+1 − hθσcV ⊤SpN,k,k+1

− σc

(
δc(βk − 1) + uN,k + h(1 − θ )Hvk + hθH M̂−1 îk,k+1 − h2θσcU Sβk + bk+1

)
. (68)

We can now formulate an LCP with three variable pairs, (A, hλ), (β,µ) and
(
v+

N + ev−

N , pN
)
, noting that the unusual

formulation of the third variable pair is required by the complementarity condition. In the most general case of
multiple cohesive zones with boundary conditions enforced, the LCP(L , q) is defined by

L =

⎡⎣0 −I 0
I σc(δc I − h2θ2σcU S) −hθσcV ⊤S
0 hθσcV S W S

⎤⎦ ,
q =

⎡⎢⎣ βk

−σc

(
δc(βk − 1) + uN,k + h(1 − θ )Hvk + hθH M̂−1 îk,k+1 − h2θσcU Sβk + bk+1

)
H̄ M̂−1 îk,k+1 − hσcV Sβk + evN,k

⎤⎥⎦ , (69)

where 0 represents a matrix of zeros, and I is the identity matrix. The LCP is solved for the following
complementarity variables:

w =

⎡⎣ βk+1
Ar

k+1
vN,k+1 + evN,k

⎤⎦ , z =

⎡⎣ µk+1
hλk+1

pN,k,k+1

⎤⎦ , (70)

where all of the cohesive zone variables should be understood as vectors. It is possible to straightforwardly generalise
to each cohesive zone possessing its own values of the material parameters, in which case the material parameters
can be treated as vectors.

Remark 7. The choice of hλk+1 as an unknown of the LCP, rather than λk+1, is made to ensure that L does not
degenerate in the limit as h → 0. This is related to the fact that λ, and hence β̇ may jump at a given instant (see
Fig. 2).

4.2. Well-posedness of the discrete LCP

We wish to demonstrate that the system (69) exhibits correct behaviour for sufficiently small time steps, i.e.
that it has a unique solution for the state variables, and hence will reliably resolve the system numerically without
introducing spurious and unphysical solution jumps. Let us start by formulating the main assumption:

Assumption 1. The time step h is chosen such that δc I − h2θ2σcU S is positive definite.

Now, we prove a proposition that the system is well-posed:

Proposition 1. Under Assumption 1, the LCP(L , q) defined by (69) has a solution. The solution is unique for βk+1
r
and λk+1 and vN,k+1. For βk > 0, the solution is also unique for A k+1 and µk+1.
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We start by proving that L is a semi-positive definite matrix for h satisfying Assumption 1. Proving this property
for L amounts to proving that 1

2

(
L + L⊤

)
given by

1
2

(
L + L⊤

)
=

⎡⎣0 0 0
0 σc(δc I − h2θ2σcU S) 0
0 0 W S

⎤⎦ , (71)

s also a positive semi-definite matrix. Since M is a positive definite matrix, the matrices W and U are semi-positive
definite matrices. Therefore, we can conclude that L is a semi-definite positive matrix. From Theorem 3.1.2 in Cottle
et al. [71], if the LCP(L , q), with a semi-definite positive matrix L , is feasible, then it is solvable. The feasibility
conditions for a LCP are given by

Lz + q ⩾ 0 and z ⩾ 0, (72)

and in the case of LCP(L , q),⎧⎪⎪⎪⎨⎪⎪⎪⎩
z1 ⩾ 0, z2 ⩾ 0, z3 ⩾ 0,
−z2 + βk ⩾ 0,
z1 + σc

(
δc I − h2θ2σc

2U S
)

z2 − hθσc SV ⊤z3 + q2 ⩾ 0,
hθσcV Sz2 + W Sz3 + q3 ⩾ 0.

(73)

Rearranging the inequalities, we obtain⎧⎪⎨⎪⎩
0 ⩽ z2 ⩽ βk,

z1 ⩾ 0, z1 ⩾ −σc
(
δc I − h2θ2σcU S

)
z2 + hθσc SV ⊤z3 − q2,

z3 ⩾ 0,W Sz3 ⩾ −hθσcV Sz2 − q3.

(74)

Since βk ⩾ 0, the first inequality is feasible for z2. Let us search for a feasible point z⋆ such that z⋆2 = 0. We must
check that the following inequalities are feasible for z⋆1 and z⋆3:{

z⋆1 ⩾ hθσc SV ⊤z⋆3 − q2, z⋆1 ⩾ 0,
W Sz⋆3 + q3 ⩾ 0, z⋆3 ⩾ 0.

(75)

Let us consider the following convex quadratic program:

minz3
1
2 z⊤

3 W Sz3 + z⊤

3 q3,

z3 ⩾ 0.
(76)

solution z⋆3 of (76) exists and satisfies the optimality conditions:

w⋆3 = W Sz⋆3 + q3 ⩾ 0, z⋆3 ⩾ 0, w⋆3
⊤z⋆3 = 0. (77)

inally, let us choose z⋆1 = max(0, hθσc SV ⊤z⋆3 − q2), which satisfies the relevant inequalities. We have proved that
he point z = col(z⋆1, 0, z⋆3) is a feasible point of the inequalities (73). The LCP(L , q) is feasible and thus solvable.

For the uniqueness of the solution, we use the characterisation of the solutions of LCP(L , q), denoted by
OL(L , q), when L is a semi-positive definite matrix [71, Theorem 3.1.7] as a polyhedral set defined by

SOL(L , q) =
{
z | z ⩾ 0, Lz + q ⩾ 0, q⊤(z − z̄) = 0,

(
L + L⊤

)
(z − z̄) = 0

}
, (78)

here z̄ is an arbitrary solution. In our case, the condition
(
L + L⊤

)
(z − z̄) = 0 yields{

σc
(
δc I − h2θ2σcU S

)
(z2 − z̄2) = 0,

W S(z3 − z̄3) = 0.
(79)

nder Assumption 1, δc I − h2θ2σcU S has full-rank. We get that z2, and hence hλk+1 is unique. Since βk+1 =

k − hλk+1, βk+1 is also unique. From w3 − w̄3 = hθσcV S(z2 − z̄2) + W S(z3 − z̄3) = 0, we conclude that w3 is
nique and therefore vN,k+1 is also unique. Furthermore, (z3 − z̄3) is in the kernel of W and then of H̄⊤, so we
ave also H̄⊤(z3 − z̄3) = 0.

From the condition, q⊤(z − z̄) = 0, we obtain

β (z − z̄ ) +

(
H̄ M̂−1

(
î − h H⊤Sσ β

)
+ ev

)⊤

(z − z̄ ) = 0, (80)
k 1 1 k,k+1 c k N,k 3 3
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since z2 − z̄2 = 0. Since vN,k = H̄vk , we have the following simplification:(
M̂−1

(
îk,k+1 − h(1 − θ )σc H⊤Sβk

)
+ evk

)⊤

H̄⊤(z3 − z̄3) = 0, (81)

ince H̄⊤(z3 − z̄3) = 0, and then

βk(z1 − z̄1) = 0. (82)

or βk > 0, z1, hence µk+1 is unique. Using that the linear relations Ar
k+1 = µk+1 − σcδc(βk+1 − 1) + σcuN,k+1

and uN,k+1 = uN,k + hvN,k+θ , we conclude that Ar
k+1 is unique if βk > 0.

Corollary 1. Under Assumption 1, the solution of the problem (63) exists and is unique for the variables
(vk+1, uk+1, βk+1, λk+1) for a sufficiently small time step h.

The uniqueness of βk+1 comes from Proposition 1. For the uniqueness of vk+1, let us consider two solutions
v̂k+1, β̂k+1, p̂N,k,k+1 and v̄k+1, β̄k+1, p̄N,k,k+1, from (65), we get

v̂k+1 − v̄k+1 = M̂−1
[
−hθσc H⊤S(β̂k+1 − β̄k+1) + H̄⊤S( p̂N,k,k+1 − p̄N,k,k+1)

]
. (83)

Since p̂N,k,k+1 − p̄N,k,k+1 is in the kernel of H̄⊤ and β̂k+1 − β̄k+1 = 0, we can conclude that vk+1 is unique, and
the integration rule uk+1 = uk + hvk+θ implies the uniqueness of uk+1.

Corollary 2 (Convex Optimisation Problem). Under Assumption 1, the LCP(L , q) is equivalent to the following
convex quadratic problem:

minhλk+1,pN,k,k+1,µk+1
1
2

[
hλk+1

pN,k,k+1

]⊤ [
σc(δc I − h2θ2σcU S) 0

0 W S

] [
hλk+1

pN,k,k+1

]
+ q⊤

⎡⎣ µk+1
hλk+1

pN,k,k+1

⎤⎦ ,
subject to µk+1 ⩾ 0, hλk+1 ⩾ 0, pN,k,k+1 ⩾ 0,

− hλk+1 + q1 ⩾ 0,
µk+1 + σc

(
δc I − h2θ2σcU S

)
hλk+1 − hθσcV ⊤SpN,k,k+1 + q2 ⩾ 0,

hθσcV Shλk+1 + W SpN,k,k+1 + q3 ⩾ 0.

(84)

The following remarks and comments can be made:

• The condition on the size of the time step is not an onerous one in practice since it is based on the condition
that δc I −h2θ2σcU S is positive definite in which h only appears as h2. In most finite elements applications, H
is assumed to be full-rank. In that case, pN,k,k+1 is also unique. The possible non-uniqueness of µk+1 and Ar

k+1
when βk = 0 comes from the fact that we impose two redundant constraints βk+1 ⩾ 0 and βk+1 ⩽ 0 related to
β ⩾ 0 and β̇ ⩽ 0. In practice, this is harmless since it does not influence the state variables (vk+1, uk+1, βk+1).

• It is important to note that the LCP becomes infeasible if βk < 0. While in principle the constraints act to
enforce a βk = 0 condition, in practice due to the finite numerical precision of the solution at each step, the
condition can be violated. In this case, the solution of the LCP can fail in turn. As such, when the value of βk
is near the machine accuracy, we set βk+1 to 0 and µk+1 is given by Eq. (68). We reduce the corresponding
contact to a simple unilateral contact with impact LCP solving only for vN,k+1, pN,k,k+1. We note that this
schema is also effective numerically, as by decreasing the size of the LCP, we speed up its solution.

• The convex minimisation problem has no straightforward mechanical meaning. A future goal would be to
express a convex minimisation problem in the spirit of the variational approach to fracture [58]. This is beyond
the scope of the paper and left to further investigations.

• In practice, the LCP(L , q) can be solved by pivoting techniques for LCPs (such as Lemke’s algorithm) or
other methods such as interior point methods, taking advantage of the convex minimisation problem [72,73]
(see also Acary and Brogliato [70, Chapter 9] in the context of non-smooth mechanics).

4.3. Discrete energy balance

In this section, we show that the discrete energy balance is satisfied by the proposed time-stepping scheme.
Starting from the energy balance in the non-impulsive case in (36), we need to adapt the definition of the energy
17
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balance when impacts occur, as can be the case with finite masses. Starting from the equation of motion given in
(49) and multiplying by 1

2 (v+
+ v−), we get

1
2

(
v+

+ v−
)⊤ M dv +

1
2

(
v+

+ v−
)⊤ K u dt =

1
2

(
v+

+ v−
)⊤ F dt +

1
2

(
v+

+ v−
)⊤ H⊤S dpN

−
1
2

(
v+

+ v−
)⊤ H⊤σc Sβ dt, (85)

Since v+ dt = v− dt = v dt and M and K are symmetric matrices, we obtain

d
(

1
2
v⊤Mv

)
+ d

(
1
2

u⊤K u
)

= F⊤v dt − (Hv)⊤σc Sβ dt +
1
2

[
H

(
v+

+ v−
)]⊤ S dpN. (86)

ith the standard definition of the kinetic energy K and strain potential energy U in the space-discretised case, we
btain

dK+ dU = F⊤v dt−(Hv)⊤σc Sβ dt+
1
2

[
H

(
v+

+ v−
)]⊤ S dpN = v⊤F dt−v⊤

Nσc Sβ dt+
1
2

(
v+

N + v−

N

)⊤ S dpN.

(87)

ith the space-discretised version of the fracture energy given in (38)

G =

∫
vN

⊤σc Sβ dt, (88)

we obtain the equivalent energy balance for the space-discretised system:

dK + dU + dG = v⊤F dt +
1
2

(
v+

N + v−

N

)⊤ S dpN. (89)

By integrating this latter relation over a time interval (t1, t2] and defining the total energy of the system as
T = K + U + G, we obtain the incremental energy balance:

∆T = T+(t2) − T−(t1) = Wext + Wimpact, (90)

here the work of external forces and impact are given by

Wext =

∫ t2

t1

v⊤F dt, and Wimpact =

∫
(t1,t2]

1
2

(
v+

N + v−

N

)⊤ S dpN. (91)

Using the constitutive law for the impact Eq. (52), it is shown [74] that as the work of impact dissipates energy,
then

∆T = T+(t2) − T−(t1) − Wext = Wimpact ⩽ 0. (92)

Let us now show that an equivalent incremental energy balance is also satisfied by the time-stepping method.
Following the same method as in [74], we derive the following incremental energy balance for the θ -method:

∆K +∆U =

(
1
2

− θ

) [
∥vk+1 − vk∥

2
M + ∥(uk+1 − uk)∥2

K

]
+ hv⊤

k+θ Fk+θ − hv⊤

N,k+θσc Sβk+θ + v⊤

N,k+θ SpN,k,k+1,

(93)

where ∥v∥2
M = v⊤Mv and ∥u∥

2
K = u⊤K u. Let us define the discrete approximation of the work done by the

external forces and the impact term within the step by

Wext,k+1 = hv⊤

k+θ Fk+θ ≈

∫ tk+1

tk
Fv dt, and Wimpact,k+1 = v⊤

N,k+θ SpN,k,k+1, (94)

and the discrete approximation of the fracture work by

∆Gk,k+1 = hv⊤

N,k+θσc Sβk+θ ≈

∫ tk+1

tk
v⊤

Nσc Sβ dt. (95)

We have the following estimate for the variation of the total mechanical energy for 1
2 < θ ⩽ 1:

∆(K + U) + ∆G − W < W . (96)
k,k+1 ext,k+1 impact,k+1
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Furthermore, it can be shown (see [74] for details) that the discretisation of the Moreau impact law (52) yields

Wimpact,k+1 ⩽ 0 if θ ⩽
1

1 + e
, (97)

nd then, we obtain

∆(K + U) + ∆Gk,k+1 − Wext,k+1 < Wimpact,k+1 ⩽ 0. (98)

or θ =
1
2 , and then for any value of e ∈ [0, 1], the incremental energy balance can be refined to

∆(K + U) + ∆Gk,k+1 − Wext,k+1 = Wimpact,k+1 ⩽ 0. (99)

Comparing to the energy balance (39), we conclude that the incremental discrete energy balance, provided by the
time-stepping scheme, ensures the practical stability of the scheme by not spuriously adding energy into the system.

5. Numerical validations

We implement our discretised system in Python, and we solve the LCP using the Siconos software [75], and use
the robust Lemke [76] algorithm to resolve the system. While other (possibly faster) algorithm choices are available,
Lemke guarantees that the correct solution to the LCP will be found, within numerical precision.

5.1. Quasi-static scalar case with elastic spring

For the sake of illustration, we will consider firstly a static system. Let us consider the case of an elastic rod
bound onto a rigid substrate with a cohesive zone, as outlined in [22] and [39], and depicted in Fig. 3:

Fig. 3. Two nodes joined by a spring. Node 1 features a cohesive zone bound onto a rigid substrate, while the driving displacement or
orce is applied to node 2.

First, we consider the structural stiffness matrix:

K =

[
E S/ℓ −E S/ℓ

−E S/ℓ E S/ℓ

]
, (100)

where ℓ is the rod length, S the rod cross-sectional area (and area of the cohesive zone) and E is the Young’s
odulus of the rod. However, it is clear that this matrix is singular, so we modify it (and the external force F) in

rder to enforce the boundary conditions and create an invertible matrix K̄ . If we consider (48) in static equilibrium
i.e. where we remove the Mv term from the equilibrium equation), we can conduct some simple re-arrangements
o obtain an LCP for the general case of multiple cohesive zones, 0 ⩽ w = Lz + q ⊥ z ⩾ 0. The discretisation
therwise follows (61), other than there being no θ -method used, as the velocities do not enter into the formulation.
hus, we have a fully implicit discretisation, giving the LCP

w =

⎡⎣ βk+1
Ar

k+1
uN,k+1

⎤⎦ , L =

⎡⎣0 −I 0
I σcδc I − σc

2 H K̄ −1 H⊤S −σc H K̄ −1 H⊤S
0 σc H K̄ −1 H⊤S H K̄ −1 H⊤S

⎤⎦ , z =

⎡⎣ µk+1
hλk+1
νk+1

⎤⎦ ,
q =

⎡⎣ βk

−σc
(
δc(βk − 1) + H K̄ −1

(
F̄k+1 − σc H⊤Sβk

)
+ bk+1

)
H K̄ −1

(
F̄k+1 − σc H⊤Sβk

)
+ bk+1

⎤⎦ .
(101)

We can then solve this system for the case where the far end of the rod is driven according to the relation

u2(t) =

⎧⎪⎨⎪⎩
1
2 t for 0 ⩽ t < 1,

1 −
1
2 t for 1 ⩽ t < 3,
1

(102)
−2 + 2 t for 3 ⩽ t,
19
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where extension is taken to be positive, and compression negative. The solution of the system (101) under driving
input (102) with H =

[
1 0

]
, material parameters σc = 0.5 MPa, δc = 1.0 mm, E = 5.0 MPa and ℓ = 1.0 mm,

imulated for 8 ms with 4000 time steps is given in Fig. 4:

Fig. 4. The solutions of the elastic bar with cohesive zone system. (a) The nodal displacements u1 and u2 as a function of time t . (b)
The cohesion β as a function of time t . (c) The cohesion β as a function of crack opening displacement uN. (d) The driving force Ar as
a function of time t . (e) The reversible part of the reaction force rN and the cohesive force rc

N as a function of time t . (f) The rate of
decohesion λ as a function of time t .

However, we must be careful that the behaviour of the system remains well-posed. When σcδc I − H K̄ −1 H⊤S is
no longer positive definite, the system loses uniqueness and multiple solutions are possible. So long as the condition

σcδc ⩾
ℓ

E
, (103)

is fulfilled, the system remains stable and there is a unique solution. Physically the unstable behaviour represents the
accumulation of more elastic strain energy than can be released at the cohesive zone. Geometrically, the softening
slope of the triangular law is greater than the elastic stiffness of the system, resulting in both constitutive laws only
being satisfied at uN > δc (see Chaboche et al. [39] for further details). For the sake of illustration, we simulate the
above system, but with E = 0.5 in Fig. 5.

We may observe that the loss of uniqueness results in a “solution jump”, where the system moves from completely
unbroken to completely broken in a single time step. More energy is stored elastically than can be released by the
cohesive zone, resulting in the instantaneous rupture once the critical traction is achieved. It should also be noted
that if larger time steps are chosen, the value of uN at which β goes to zero is subject to “overshoot”, meaning that
an additional spurious energy release occurs.

This ill-posed system behaviour can be entirely avoided by working in dynamics, so from this point onwards we
do so. However, as Fig. 4 demonstrates, the model can be successfully implemented in statics, provided that the

condition given in (103) is always respected.
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Fig. 5. The solutions of the elastic bar with cohesive zone system for ill-posed system values. (a) The nodal displacements u1 and u2 as
a function of time t . (b) The cohesion β as a function of time t . (c) The cohesion β as a function of crack opening displacement uN. (d)
The driving force Ar as a function of time t . (e) The reversible part of the reaction force rN and the cohesive force rc

N as a function of
ime t . (f) The rate of decohesion λ as a function of time t .

.2. Dynamic cohesive zone model with elasticity

.2.1. Dynamic case with single elastic spring
Now, we consider the same system as above, but this time in dynamics. We use the system parameters

c = 0.5 MPa, δc = 1.0 mm, e = 0.0, E = 0.5 MPa, l = 1 mm, S = 1 mm2, and M =

[
0.25 0

0 0.25

]
g.

hese values result in an ill-posed system in the static case, but as we demonstrate below, the addition of dynamics
egularises the system. We simulate the system for 8 ms using 4000 time steps and θ = 1, subject to the same

driving displacement (102). We observe the system evolution depicted in Fig. 6.
We may observe in Fig. 6 that the inertial effects result in a smoothly changing value of β with time, as opposed

o the instantaneous rupture of the equivalent system in statics, thus demonstrating the well-posed nature of the
ystem.

In order to demonstrate the effect of including percussions in the formulation, we may simulate the same system
f a spring attached to a cohesive zone, but with different parameters and subject to a different driving force. We
se the system parameters σc = 1.0 MPa, δc = 1.0 mm, e = 0.0, E = 10 MPa, l = 1 mm, S = 1 mm2, and

M =

[
2.5 0
0 2.5

]
g. The system is subject to the driving force in Newtons:

F = 1.5σc exp (0.25t) sin (π t) . (104)
e observe the system evolution depicted in Fig. 7.
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Fig. 6. The solutions of the dynamic CZM system with elasticity, for values that are ill-posed in statics. (a) The displacements u as a
function of time t . (b) The velocities v as a function of time t . (c) The cohesion β as a function of time t . (d) The thermodynamic
driving force Ar as a function of time t . (e) The percussion pN as a function of time t . (f) The cohesion β as a function of crack opening
displacement uN.

5.2.2. Dynamic double cantilever beam
We simulate a double cantilever beam (DCB) shown in Fig. 8 inspired by that found in Camacho and Ortiz [27],

but using parameters for polymethyl methacrylate (PMMA). We simulate a DCB with a length of 2 mm, with a
pre-existing crack of 0.4 mm length. The beam is taken to have a thickness of 1 mm, and to be loaded in plane
stress. The beam is meshed using Gmsh 4.8.1 [77], and read into Python with Meshio 5.3.0 [78] (as are all the
finite element meshes in this work). The bulk material has Young’s modulus E = 2.7 × 103 MPa, a Poisson’s ratio
ν = 0.39 [79], and a mass density ρ = 1.18 × 10−3 g/mm3 [17]. We use constant strain (T3) triangular elements
in our finite element discretisation, with a consistent mass matrix. The cohesive zone parameters are the critical
traction σc = 45 MPa, the fracture energy Gc = 0.14 N/mm, and the critical distance δc = 0.0062 mm, while the
coefficient of restitution e = 0.

We simulate only half the system, exploiting the symmetry inherent to the problem. Thus, the lower boundary
of the system consists of a series of nodes with cohesive zones attached, excepting a section representing an initial
crack. It is important to note that where the Dirichlet boundary intersects with the cohesive zone boundary, the node
is removed from the set of cohesive zone nodes, and its tributary area is allocated to the neighbouring cohesive
node. Thus, the crack is allowed to propagate over the entire length of the system, but there is no possibility of
the LCP being made infeasible by trying to enforce the Dirichlet boundary condition on a cohesive zone node. The
mesh is shown in Fig. 9.

We simulate the upper half of the DCB using a controlled displacement test, displacing at the rate of 1 mm/ms to
a target displacement at the free end of 0.6 mm. We set θ = 0.5, and adopt a large initial time step of h = 0.0015 ms,
so that the loading stage before the crack initiates is not overly time-consuming. Once the crack initiates, we enforce
a smaller time step of h = 2.5 × 10−4 ms, ensuring that the LCP remains well-posed. In principle, we also allow

adaptive time-stepping (dividing the time step in half) in the event that the LCP does not resolve correctly, however,
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Fig. 7. The solutions of the dynamic CZM system with elasticity. (a) The displacements u as a function of time t . (b) The velocities v as a
function of time t . (c) The cohesion β as a function of time t . (d) The thermodynamic force Ar as a function of time t . (e) The percussion
pN as a function of time t . (f) The cohesion β as a function of crack opening displacement uN.

Fig. 8. The symmetry of the double cantilever beam allows us to simulate it as a single cantilever beam fixed at the left end (diagonal
atching), with cohesive zone nodes attached to a rigid substrate along the symmetry plane (cross hatching). A force or velocity is applied
t the upper right hand corner, at the free end. We follow the decohesion at the points labelled 0 through 4.

Fig. 9. The mesh of the double cantilever beam, and the total displacements of the mesh at the end of the controlled displacement test,
easured by the norm of the displacements at each node.
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this condition is never activated during the simulation. We insist on the fact that this time step is relatively large
compared to simulations performed with intrinsic models which require small time steps due to the initial stiffness
of the system. The results of the simulation are shown in Fig. 10.

Fig. 10. The simulation of a double cantilever beam under velocity control. (a) The cohesion β as a function of time t at the points of
interest. (b) The cohesion β as a function of distance from the tip of the initial crack xcrack, at the times that the cohesion of each of
he points of interest goes to zero. (c) The length L of the crack as a function of time t . (d) The crack tip velocity L̇ normalised by the
ayleigh wave speed cR, as a function of time t .

The Rayleigh wave cR speed is calculated by

cR =

√
E

2ρ(1 + ν)
0.886 + 1.14ν

1 + ν
, (105)

which is a good approximation to the solution of the Rayleigh wave function [80]. We apply a Savitzky–Golay
filter [81] to the crack length in order to smooth the signal slightly. A window of 31 time steps and a first-order
polynomial is observed to reduce the noise sufficiently so that the underlying velocity trend is legible. The crack
tip velocity is then calculated by assuming a linear growth rate between the spatial points as they crack. We may
observe in Fig. 10 that the speed of the decohesion gradually declines over time, other than for the very first point
to crack, which takes substantially longer than the others. Some slowing of the initial decohesion is observable
in the curve for β3 in subfigure (a), as a result of the influence of the geometry of the problem. In subfigure (b),
we can see that the size of the fracture process zone remains essentially constant throughout the cracking process.
Subfigures (c) and (d) demonstrate the relatively steady growth in the crack length, with an initial sharp increase
occurring as the crack establishes before gradually tapering away. We also note that the crack velocity is very small
relative to the mode I theoretical limit of cR, due to both geometrical effects and the low velocity at which the
displacement is controlled.

We can also consider the energy-conserving properties of the integration scheme, by plotting the changing
energetic quantities:

We can see in Fig. 11, that the work input matches exactly with the sum of the strain, kinetic and expended
cohesive energies, indicating that the integration scheme successfully conserves the energy. As the crack grows, a
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Fig. 11. The energies of the dynamic double cantilever beam simulation under velocity control.

comparatively greater share of the work input is used in the creation of new surface area than in the storage of
strain energy, while the kinetic energy remains negligible (as is to be expected in a slow displacement-controlled
simulation). However, at the point at which the crack is constrained from further growth, elastic energy becomes
the dominant fraction of the total energy.

We also simulate the same system under force control, this time increasing the loading (in Newtons) according
to F = 10t until one element is fully decohered, at which point the force is held constant. The results of the
simulation are shown in Fig. 12.

Once again, we apply a Savitzky–Golay filter with a window size of 31 time steps and a first order polynomial
on the crack length L , to reduce the noise when calculating L̇. In comparing Fig. 10 and Fig. 12, we may observe
that the force-controlled system decoheres much more slowly initially, up until the point at which the crack begins,
where it then travels much more rapidly than the velocity-controlled system, with crack arrest being achieved by
the interaction with the fixed boundary of the system. This geometry, as well as the small applied force, once
again results in the crack being slow in comparison with the theoretical limit of cR, although at the peak velocity
t is approximately an order of magnitude faster than the speed of the crack under velocity control. We note that
he decohesion of points 1, 2 and 3 are more rapid and more concentrated in time than for the velocity controlled
ystem, and that point 4 experiences some decohesion, whereas it remained intact for the velocity controlled system.
nce again, we can also consider the energetic properties of the system:
We may observe that the energetic behaviour of this system depicted in Fig. 13 is rather different to that of the

elocity controlled system. We observe that the system is truly dynamic, and a significant part of the work input is
ransformed into kinetic energy. We also observe that at a certain point, the work input decreases and the system

oves towards its equilibrium state, with a certain amount of surface energy, and exchanges between the strain and
inetic energies. We note that total system energy matches exactly the total work input, indicating that the numerical
chema successfully conserves energy in a simulation with more dynamic effects.

.2.3. Rhombus hole specimen
As a more direct comparison of our method against an equivalent intrinsic model, we also simulate the rhombus

ole specimen in [17], applying (69) with the same principles as for the DCB. The sample has a width of 40 mm
nd a height of 60 mm, with a rhombus hole in the centre that has a corner angle γ and a half-diagonal length of
.95 mm, as illustrated in Fig. 14. The sample has a thickness of 10 mm, and is simulated in plane strain (Doitrand,
ersonal communication).

We exploit symmetry so that we need only simulate one quarter (the top-right) of the sample. The boundary
onditions on the left and bottom edges are thus symmetry conditions, with normal displacements restricted to be
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Fig. 12. The simulation of a double cantilever beam under force control. (a) The cohesion β as a function of time t at the points of interest.
b) The cohesion β as a function of distance from the tip of the initial crack xcrack, at the time that the cohesion of each of the points of
nterest goes to zero. (c) The length L of the crack as a function of time t . (d) The crack tip velocity L̇ normalised by the Rayleigh wave

speed cR, as a function of time t .

Fig. 13. The energies of the dynamic double cantilever beam simulation under force control.

ositive or zero, and tangential displacements unrestrained. The right edge and the rhombus hole edge are similarly
nrestrained, while the loading is applied as a Dirichlet condition on the top edge. As the crack is predicted to
ccur along the left edge, these nodes are included in the set of cohesive zone nodes. The 1 mm length closest to
he corner of the rhombus hole is allocated a very fine mesh, with one node every 0.002 mm, ensuring accurate
26
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Fig. 14. The double symmetry of the rhombus hole specimen allows us to simulate only the top right quarter. Standard symmetry conditions
(diagonal hatching) are applied to the bottom boundary, while cohesive zone nodes and a symmetry condition are attached to the left
boundary (cross hatching). A velocity is applied uniformly to all points on the top boundary. The vertical half diagonal retains a constant
length, but the angle γ is varied to produce different geometries.

esolution of the cohesive zone. The mesh is steadily coarsened to reach a characteristic size of 0.5 mm at the top
f the left hand edge, while all of the bulk regions that exhibit purely elastic behaviour are allocated a characteristic
ize of 2 mm. Hence, the mesh is highly refined in the region of the crack process, while remaining computationally
fficient. In order to better match the simulations of Doitrand et al. [17], we use a quadrangular mesh, generated
y the Blossom-Quad algorithm included in Gmsh [82]. The mesh is shown in Fig. 15.

The loading protocol is to impose a vertical displacement of a rate of 1 mm/s on the top edge, while also
nforcing a no-slip condition, so that the horizontal velocities on the top edge are zero. At the time the first node
racks (i.e. β ⩽ 1 × 10−12), the vertical loading is stopped and the displacement is held constant. The simulation
ontinues until 20 time steps have passed with no changes in the value of β in any of the cohesive zone nodes.

The simulation is carried out with the values in [17] representing PMMA, namely a Young’s modulus E =

1600 MPa, a Poisson’s ratio ν = 0.37, a density ρ = 1.19×10−3 g/mm3, a critical traction σc = 80 MPa, a fracture
energy Gc = 0.25 N/mm, and a coefficient of restitution e = 0. We use linear quadrangular (Q4) finite elements
with full integration and a consistent mass matrix. We set θ = 0.5, and our initial time step size as h = 4 ms,
up until the point that cracking occurs, when we set h = 1 × 10−4 ms. We once again allow in-principle adaptive
time-stepping if required to resolve the LCP, however the simulation successfully completes without activating this
condition.

We can plot the results of the simulation in terms of the crack progression, once more tracking results at the
points of interest, which in this case are the point at which the crack begins (index 0), the point at which the crack
arrests (index 4), and the quarter, half and three-quarter points between them (indices 1, 2, and 3, respectively).

Once again, we have applied a Savitzky–Golay filter of window size 31 time steps, and polynomial order 1 to
the crack length, to obtain a smoother crack velocity. In this case, we observe several interesting behaviours in
Fig. 16. Unlike the relatively steady decohesion observed in the DCB, we observe that the node at the corner of the
rhombus hole steadily decoheres over a long period of time, but once it reaches zero and the crack begins growing,
the speed of decohesion is rapid (shown in the inset to (a)). Similarly, when considering the spatial distribution of

the cohesion variable at the time each quarter point is fully decohered, we see that the length of the fracture process
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Fig. 15. The mesh of the rhombus hole specimen for the angle γ = 90◦, and the total displacements of the mesh at the end of the test,
measured by the norm of the displacements at each node.

Fig. 16. The simulation of a rhombus hole specimen with γ = 90◦. (a) The cohesion β as a function of time t at the quarter points. (b)
he cohesion β as a function of distance from the tip of the initial crack xcrack , at the time that the cohesion of each of the quarter points
oes to zero. (c) The length L of the crack as a function of time t . (d) The crack tip velocity L̇ , normalised by the Rayleigh wave speed

cR, as a function of time t .
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zone is essentially constant, as is the case with the DCB. The length of the crack grows with a velocity that appears
to fluctuate around a decreasing overall trend. The final crack arrest length is 0.64 mm, which compares well with
the value of 0.593 mm obtained by Doitrand et al. [17].

Once again, we may also study the energetic properties of the solution algorithm that we implement:

Fig. 17. The energies of the rhombus hole simulation.

We can see in Fig. 17 that the strain energy accounts for the majority of the work input, while the kinetic energy
and surface energy are both negligible.

As a final point of comparison, we may follow Doitrand et al. [17], and vary the rhombus hole angle γ while
observing the effect on the crack initiation force Finit and the crack arrest length Larrest. Some changes to the patterns
of mesh refinement were made in the interests of computational efficiency, with a refined mesh being retained at
the corner and in the region of the expected crack arrest point, but being less refined in between.

Fig. 18. The results of simulations varying the rhombus hole angle γ . (a) The crack initiation force Finit at which cracking begins. (b) The
crack arrest length L at which crack propagation stops, in the absence of continued loading.

We may observe in Fig. 18 that there is a good agreement between the results of the simulations in [17], and
the results of our models, with the initiation force decreasing and crack arrest length increasing as the rhombus
hole angle increases. Possible reasons that may account for the differences may be the initial rigidity present in the
CZM used by Doitrand et al. [17] (they allocated an initial stiffness of 1 × 108 MPa/mm), different meshes used to
simulate the results, and different implementations of the cohesive zone between our finite elements and those of
Abaqus. We note also that our results are achieved with substantially larger minimum time steps (1 × 10−4 ms in
our case, against 1.5×10−6 ms for Doitrand et al. [17]). They also conducted a sensitivity analysis for the stiffness
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of the CZM using the 90◦ rhombus hole mesh, with the minimum time step size ranging from 1 × 10−4 ms for
a stiffness of 1 × 106 MPa/mm, down to 2.4 × 10−7 ms for a stiffness of 1 × 1010 MPa/mm. It is clear that our
implementation of an extrinsic CZM is substantially more numerically efficient than a typical intrinsic CZM, in
some cases by orders of magnitude.

6. Conclusions

In this paper, we first used the principle of virtual power to establish the equilibrium and boundary conditions of
a body with a cohesive zone. Then, we postulated a free energy potential for the surface that allowed us to obtain
non-smooth state laws of the system. These state laws describe extrinsic cohesive zone models that do not have
the “shifted intrinsic model” structure, thus guaranteeing appropriate physical behaviour under complex dynamic
loading. By appropriately specifying a dissipative pseudo-potential, we obtained a complete generalised constitutive
model of the cohesive zone system for normal crack opening, and demonstrated that while in this model decohesion
is an irreversible process, it is also non-dissipative. We then specified a particular energetic potential in order to
obtain a linear evolution of the cohesion variable with the displacement jump across the crack.

By appropriately discretising our system, and working with differential measures, we were able to include non-
smooth impact dynamics within our model. The discretised system was combined with a θ -method to obtain a
time-stepping scheme that could be formulated as a linear complementarity problem. We then proved that the
problem was well-posed for a sufficiently small time step, meaning that a solution exists, and that it is unique
for certain variables. Moreover, it has been shown that the scheme has very good properties of conservation of
energy balances.

We then implemented the model numerically by solving the complementarity problem at each time step. We
demonstrated the system in statics, firstly parameter values leading to a well-posed problem, and then with values
leading to an ill-posed problem. We then demonstrated that the same system in dynamics remains well-posed.
Finally, we simulated some physical systems of interest by combining the linear complementarity problem with
the finite element method. Both a double cantilever beam, and a rhombus hole sample were satisfactorily resolved,
with the numerical scheme demonstrating good integration properties. The results of the rhombus hole simulations
compared well with those of other authors in the literature, and were achieved with much larger time steps.

This work has demonstrated that applications of convex analysis can lead to physically correct and numerically
efficient models for crack propagation. In this work, we decided to remain in a frictionless linear setting and to
consider only a normal decohesion process to avoid excessive complexity in the presentation, but natural extensions
of this work are to generalise the model to tangential displacements, adopt other possible forms of the cohesion
evolution law, and to combine crack propagation with other physical phenomena.
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Code and data availability

The code required to run the simulations described in this paper is available in a GitHub repository archived on

Software Heritage, or alternatively on Zenodo. The data outputs of the codes are also available on Zenodo.

30

https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://archive.softwareheritage.org/swh:1:dir:f8916327709893169b9fcc2d3e40c08abe4a3198;origin=https://github.com/nickcollins-craft/On-the-formulation-and-implementation-of-extrinsic-cohesive-zone-models-with-contact;visit=swh:1:snp:1b37606cdb0141c8a708d3e0512fe695779e2d88;anchor=swh:1:rev:f491ac2005140975229088deda190a656f516b5c
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939391
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154
https://doi.org/10.5281/zenodo.6939154


N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545
References

[1] K. Okubo, H.S. Bhat, E. Rougier, S. Marty, A. Schubnel, Z. Lei, E.E. Knight, Y. Klinger, Dynamics, radiation, and overall energy budget
of earthquake rupture with coseismic off-fault damage, J. Geophys. Res.: Solid Earth (ISSN: 2169-9313) 124 (11) (2019) 11771–11801,
http://dx.doi.org/10.1029/2019JB017304, arXiv:1901.01771. URL: https://onlinelibrary.wiley.com/doi/10.1029/2019JB017304.

[2] B. Bergfeld, A. van Herwijnen, G. Bobillier, E. Larose, L. Moreau, B. Trottet, J. Gaume, J. Cathomen, J. Dual, J.
Schweizer, Crack propagation speeds in weak snowpack layers, J. Glaciol. (ISSN: 0022-1430) (2021) 1–14, http://dx.doi.org/
10.1017/JOG.2021.118, URL: https://www.cambridge.org/core/journals/journal-of-glaciology/article/crack-propagation-speeds-in-weak-
snowpack-layers/C28905FA3198DF87B0A18AB135FC4766.

[3] D. Ashouri Vajari, B.N. Legarth, C.F. Niordson, Micromechanical modeling of unidirectional composites with uneven interfacial
strengths, Eur. J. Mech. A Solids (ISSN: 09977538) 42 (2013) 241–250, http://dx.doi.org/10.1016/j.euromechsol.2013.06.008.

[4] L. Laiarinandrasana, C. Bertaux, N. Amouroux, C. Ovalle Rodas, Ductile crack initiation and growth on a plasticized polyvinylchloride
during air bag deployment, J. Theor. Comput. Appl. Mech. (2021) http://dx.doi.org/10.46298/jtcam.7401, URL: https://hal.archives-
ouvertes.fr/hal-03206110v2https://jtcam.episciences.org/7401.

[5] T. Corre, M. Coret, E. Verron, B. Leblé, Non steady-state intersonic cracks in elastomer membranes under large static strain, J.
Theor. Comput. Appl. Mech. (2021) http://dx.doi.org/10.46298/jtcam.6906, URL: https://hal.archives-ouvertes.fr/hal-03006177v3https:
//jtcam.episciences.org/6906.

[6] S. Jiang, L. Shen, F. Guillard, I. Einav, Characterisation of fracture evolution of a single cemented brittle grain using in-situ X-ray
computed tomography, Int. J. Rock Mech. Min. Sci. (ISSN: 1365-1609) 145 (2021) 104835, http://dx.doi.org/10.1016/J.IJRMMS.2021.
104835.

[7] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A (ISSN: 0264-3952) 221 (582–593) (1921) 163–198,
http://dx.doi.org/10.1098/rsta.1921.0006, URL: https://royalsocietypublishing.org/doi/10.1098/rsta.1921.0006.

[8] X.-P. Xu, A. Needleman, Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids (ISSN:
00225096) 42 (9) (1994) 1397–1434, http://dx.doi.org/10.1016/0022-5096(94)90003-5, URL: https://linkinghub.elsevier.com/retrieve/pii/
0022509694900035.

[9] Z. Zhang, G.H. Paulino, W. Celes, Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle
materials, Internat. J. Numer. Methods Engrg. (ISSN: 00295981) 72 (8) (2007) 893–923, http://dx.doi.org/10.1002/nme.2030, URL:
http://doi.wiley.com/10.1002/nme.2030.

[10] V.P. Nguyen, J.Y. Wu, Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model, Comput. Methods
Appl. Mech. Engrg. (ISSN: 00457825) 340 (2018) 1000–1022, http://dx.doi.org/10.1016/j.cma.2018.06.015.

[11] M. Azab, G. Parry, R. Estevez, An analytical model for DCB/wedge tests based on Timoshenko beam kinematics for accurate
determination of cohesive zone lengths, Int. J. Fract. (ISSN: 15732673) 222 (1–2) (2020) 137–153, http://dx.doi.org/10.1007/s10704-
020-00438-2.

[12] E. Guilloteau, H. Charrue, F. Creuzet, The direct observation of the core region of a propagating fracture crack in glass, Europhys.
Lett. (EPL) (ISSN: 0295-5075) 34 (7) (1996) 549–554, http://dx.doi.org/10.1209/epl/i1996-00493-3.

[13] F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, C. Marlière, Glass breaks like metal, but at the nanometer
scale, Phys. Rev. Lett. (ISSN: 10797114) 90 (7) (2003) 4, http://dx.doi.org/10.1103/PhysRevLett.90.075504.

[14] N. Berman, G. Cohen, J. Fineberg, Dynamics and properties of the cohesive zone in rapid fracture and friction, Phys. Rev. Lett. (ISSN:
10797114) 125 (12) (2020) 125503, http://dx.doi.org/10.1103/PhysRevLett.125.125503.

[15] J. Réthoré, R. Estevez, Identification of a cohesive zone model from digital images at the micron-scale, J. Mech. Phys. Solids (ISSN:
00225096) 61 (6) (2013) 1407–1420, http://dx.doi.org/10.1016/j.jmps.2013.01.011.

[16] R. Vargas, A. Tsitova, F. Bernachy-Barbe, B. Bary, R.B. Canto, F. Hild, On the identification of cohesive zone model for curved
crack in mortar, Strain (ISSN: 0039-2103) 56 (6) (2020) http://dx.doi.org/10.1111/str.12364, URL: https://doi.org/10.1111/str.12364https:
//onlinelibrary.wiley.com/doi/10.1111/str.12364.

[17] A. Doitrand, R. Estevez, D. Leguillon, Comparison between cohesive zone and coupled criterion modeling of crack initiation in
rhombus hole specimens under quasi-static compression, Theor. Appl. Fract. Mech. (ISSN: 01678442) 99 (November 2018) (2019)
51–59, http://dx.doi.org/10.1016/j.tafmec.2018.11.007, URL: https://doi.org/10.1016/j.tafmec.2018.11.007https://linkinghub.elsevier.com/
retrieve/pii/S0167844218304725.

[18] A. Doitrand, R. Henry, S. Meille, Brittle material strength and fracture toughness estimation from four-point bending test, J. Theor.
Comput. Appl. Mech. (2021) http://dx.doi.org/10.46298/jtcam.6753, URL: https://jtcam.episciences.org/6753.

[19] M.L. Falk, A. Needleman, J.R. Rice, A critical evaluation of dynamic fracture simulations using cohesive surfaces, J. Phys. IV (ISSN:
1155-4339) 11 (2001) 43–50, http://dx.doi.org/10.1051/jp4:2001506, http://www.edpsciences.org/10.1051/jp4:2001506.

[20] D.V. Kubair, P.H. Geubelle, Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture, Int. J. Solids Struct.
(ISSN: 0020-7683) 40 (15) (2003) 3853–3868, http://dx.doi.org/10.1016/S0020-7683(03)00171-9, URL: http://www.sciencedirect.com/
science/article/pii/S0020768303001719.

[21] V.P. Nguyen, Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation caveats and applications in computational
fracture mechanics, Eng. Fract. Mech. (ISSN: 0013-7944) 128 (2014) 37–68, http://dx.doi.org/10.1016/j.engfracmech.2014.07.003, URL:
http://www.sciencedirect.com/science/article/pii/S0013794414002136.

[22] V. Acary, Y. Monerie, Nonsmooth Fracture Dynamics Using a Cohesive Zone Approach, Research Report RR-6032, INRIA, 2006, p.
56, URL: http://hal.inria.fr/inria-00110560/en/.

[23] A. Seagraves, R. Radovitzky, Advances in Cohesive Zone Modeling of Dynamic Fracture, 2010, pp. 349–405, http://dx.doi.org/10.

1007/978-1-4419-0446-1_12,

31

http://dx.doi.org/10.1029/2019JB017304
http://arxiv.org/abs/1901.01771
https://onlinelibrary.wiley.com/doi/10.1029/2019JB017304
http://dx.doi.org/10.1017/JOG.2021.118
http://dx.doi.org/10.1017/JOG.2021.118
http://dx.doi.org/10.1017/JOG.2021.118
https://www.cambridge.org/core/journals/journal-of-glaciology/article/crack-propagation-speeds-in-weak-snowpack-layers/C28905FA3198DF87B0A18AB135FC4766
https://www.cambridge.org/core/journals/journal-of-glaciology/article/crack-propagation-speeds-in-weak-snowpack-layers/C28905FA3198DF87B0A18AB135FC4766
https://www.cambridge.org/core/journals/journal-of-glaciology/article/crack-propagation-speeds-in-weak-snowpack-layers/C28905FA3198DF87B0A18AB135FC4766
http://dx.doi.org/10.1016/j.euromechsol.2013.06.008
http://dx.doi.org/10.46298/jtcam.7401
https://jtcam.episciences.org/7401
https://jtcam.episciences.org/7401
https://jtcam.episciences.org/7401
http://dx.doi.org/10.46298/jtcam.6906
https://jtcam.episciences.org/6906
https://jtcam.episciences.org/6906
https://jtcam.episciences.org/6906
http://dx.doi.org/10.1016/J.IJRMMS.2021.104835
http://dx.doi.org/10.1016/J.IJRMMS.2021.104835
http://dx.doi.org/10.1016/J.IJRMMS.2021.104835
http://dx.doi.org/10.1098/rsta.1921.0006
https://royalsocietypublishing.org/doi/10.1098/rsta.1921.0006
http://dx.doi.org/10.1016/0022-5096(94)90003-5
https://linkinghub.elsevier.com/retrieve/pii/0022509694900035
https://linkinghub.elsevier.com/retrieve/pii/0022509694900035
https://linkinghub.elsevier.com/retrieve/pii/0022509694900035
http://dx.doi.org/10.1002/nme.2030
http://doi.wiley.com/10.1002/nme.2030
http://dx.doi.org/10.1016/j.cma.2018.06.015
http://dx.doi.org/10.1007/s10704-020-00438-2
http://dx.doi.org/10.1007/s10704-020-00438-2
http://dx.doi.org/10.1007/s10704-020-00438-2
http://dx.doi.org/10.1209/epl/i1996-00493-3
http://dx.doi.org/10.1103/PhysRevLett.90.075504
http://dx.doi.org/10.1103/PhysRevLett.125.125503
http://dx.doi.org/10.1016/j.jmps.2013.01.011
http://dx.doi.org/10.1111/str.12364
https://onlinelibrary.wiley.com/doi/10.1111/str.12364
https://onlinelibrary.wiley.com/doi/10.1111/str.12364
https://onlinelibrary.wiley.com/doi/10.1111/str.12364
http://dx.doi.org/10.1016/j.tafmec.2018.11.007
https://linkinghub.elsevier.com/retrieve/pii/S0167844218304725
https://linkinghub.elsevier.com/retrieve/pii/S0167844218304725
https://linkinghub.elsevier.com/retrieve/pii/S0167844218304725
http://dx.doi.org/10.46298/jtcam.6753
https://jtcam.episciences.org/6753
http://dx.doi.org/10.1051/jp4:2001506
http://www.edpsciences.org/10.1051/jp4:2001506
http://dx.doi.org/10.1016/S0020-7683(03)00171-9
http://www.sciencedirect.com/science/article/pii/S0020768303001719
http://www.sciencedirect.com/science/article/pii/S0020768303001719
http://www.sciencedirect.com/science/article/pii/S0020768303001719
http://dx.doi.org/10.1016/j.engfracmech.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0013794414002136
http://hal.inria.fr/inria-00110560/en/
http://dx.doi.org/10.1007/978-1-4419-0446-1_12
http://dx.doi.org/10.1007/978-1-4419-0446-1_12
http://dx.doi.org/10.1007/978-1-4419-0446-1_12


N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545
[24] F. Zhou, J.-F. Molinari, Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency, Internat. J.
Numer. Methods Engrg. (ISSN: 0029-5981) 59 (1) (2004) 1–24, http://dx.doi.org/10.1002/nme.857, URL: http://doi.wiley.com/10.1002/
nme.857.

[25] B. Carter, C.S. Chen, L.P. Chew, N. Chrisochoides, G.R. Gao, G. Heber, A.R. Ingraffea, R. Krause, C. Myers, D. Nave, K. Pingali, P.
Stodghill, S. Vavasis, P.A. Wawrzynek, Parallel FEM simulation of crack propagation-challenges, status, and perspectives, in: Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), in:
LNCS, 1800, Springer Verlag, ISBN: 354067442X, 2000, pp. 443–449, http://dx.doi.org/10.1007/3-540-45591-4_59.

[26] R. Espinha, K. Park, G.H. Paulino, W. Celes, Scalable parallel dynamic fracture simulation using an extrinsic cohesive zone model,
Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 266 (2013) 144–161, http://dx.doi.org/10.1016/j.cma.2013.07.008, URL:
http://www.sciencedirect.com/science/article/pii/S0045782513001783.

[27] G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct. (ISSN: 0020-
7683) 33 (20) (1996) 2899–2938, http://dx.doi.org/10.1016/0020-7683(95)00255-3, URL: http://www.sciencedirect.com/science/article/
pii/0020768395002553.

[28] N. Murphy, A. Ivankovic, The prediction of dynamic fracture evolution in PMMA using a cohesive zone model, Eng. Fract. Mech.
(ISSN: 0013-7944) 72 (6) (2005) 861–875, http://dx.doi.org/10.1016/j.engfracmech.2004.08.001, URL: http://www.sciencedirect.com/
science/article/pii/S001379440400195X. Prospects in Fracture Papers from a Conference held to Celebrate the 65th Birthday of Professor
J.G. Williams, FRS, FREng Imperial College London, July 2003.

[29] K.D. Papoulia, C.-H. Sam, S.A. Vavasis, Time continuity in cohesive finite element modeling, Internat. J. Numer. Methods Engrg.
(ISSN: 0029-5981) 58 (5) (2003) 679–701, http://dx.doi.org/10.1002/nme.778, URL: http://doi.wiley.com/10.1002/nme.778.

[30] C.-H. Sam, K.D. Papoulia, S.A. Vavasis, Obtaining initially rigid cohesive finite element models that are temporally convergent,
Eng. Fract. Mech. (ISSN: 00137944) 72 (14) (2005) 2247–2267, http://dx.doi.org/10.1016/j.engfracmech.2004.12.008, URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0013794405000895.

[31] F. Cazes, M. Coret, A. Combescure, A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone
models, Comput. Mech. 51 (2013) 865–884, URL: https://hal.archives-ouvertes.fr/hal-00938515.

[32] F. Zhou, J.-F. Molinari, Stochastic fracture of ceramics under dynamic tensile loading, Int. J. Solids Struct. (ISSN: 00207683) 41
(22–23) (2004) 6573–6596, http://dx.doi.org/10.1016/j.ijsolstr.2004.05.029.

[33] M. Bybordiani, D. Dias-da Costa, A consistent finite element approach for dynamic crack propagation with explicit time integration,
Comput. Methods Appl. Mech. Engrg. (ISSN: 00457825) 376 (2021) 113652, http://dx.doi.org/10.1016/j.cma.2020.113652, URL:
https://doi.org/10.1016/j.cma.2020.113652https://linkinghub.elsevier.com/retrieve/pii/S0045782520308379.

[34] F. Parrinello, Hybrid equilibrium element with interelement interface for the analysis of delamination and crack propagation problems,
Internat. J. Numer. Methods Engrg. (ISSN: 0029-5981) (August) (2020) http://dx.doi.org/10.1002/nme.6531, URL: https://onlinelibrary.
wiley.com/doi/10.1002/nme.6531.

[35] F. Parrinello, G. Borino, Cohesive-frictional interface in an equilibrium based finite element formulation, in: A. Carcaterra, A.
Paolone, G. Graziani (Eds.), Proceedings of XXIV AIMETA Conference 2019, in: Lecture Notes in Mechanical Engineering, Springer
International Publishing, Cham, ISBN: 978-3-030-41056-8, 2020, pp. 419–426, http://dx.doi.org/10.1007/978-3-030-41057-5, September.
URL: http://link.springer.com/10.1007/978-3-030-41057-5.

[36] D. Versino, H.M. Mourad, C.G. Dávila, F.L. Addessio, A thermodynamically consistent discontinuous Galerkin formulation for
interface separation, Compos. Struct. (ISSN: 0263-8223) 133 (2015) 595–606, http://dx.doi.org/10.1016/j.compstruct.2015.07.080, URL:
http://www.sciencedirect.com/science/article/pii/S0263822315006261.

[37] J.W. Foulk, An examination of stability in cohesive zone modeling, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 199
(9–12) (2010) 465–470, http://dx.doi.org/10.1016/J.CMA.2009.08.025.

[38] M. Samimi, J.A.W. van Dommelen, M.G.D. Geers, A three-dimensional self-adaptive cohesive zone model for interfacial delamination,
Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 200 (49–52) (2011) 3540–3553, http://dx.doi.org/10.1016/J.CMA.2011.08.021.

[39] J.L. Chaboche, F. Feyel, Y. Monerie, Interface debonding models: A viscous regularization with a limited rate dependency, Int. J.
Solids Struct. (ISSN: 00207683) 38 (18) (2001) 3127–3160, http://dx.doi.org/10.1016/S0020-7683(00)00053-6.

[40] J.J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, C. R. l’Acad. Sci. Sér. A 271 (1970) 608–611.
[41] J.J. Moreau, On unilateral constraints, friction and plasticity, in: New Variational Techniques in Mathematical Physics, Springer Berlin

Heidelberg, 1974, pp. 171–322, http://dx.doi.org/10.1007/978-3-642-10960-7_7, URL: https://link.springer.com/chapter/10.1007/978-3-
642-10960-7_7.

[42] J.J. Moreau, Une formulation du contact à frottement sec; application au calcul numérique, C. R. l’Acad. Sci. Sér. 2 (ISSN: 0764-4450)
302 (13) (1986) 799–801.

[43] B. Halphen, Q.S. Nguyen, Sur les matériaux standard généralisés, J. Méc. 14 (1975) 39–63.
[44] J.-J. Marigo, Formulation d’une loi d’endommagement d’un materiau élastique, C. R. l’Acad. Sci. Sér. 2 292 (May) (1981) 1309–1312.
[45] G.T. Houlsby, Frictional plasticity in a convex analytical setting, Open Geomech. 1 (3) (2019) 1–10, http://dx.doi.org/10.5802/ogeo.2,

URL: https://opengeomechanics.centre-mersenne.org/item/OGEO_2019__1__A3_0.
[46] M. Frémond, Contact with adhesion, in: Nonsmooth Mechanics and Applications, Springer Vienna, Vienna, 1988, pp. 177–221,

http://dx.doi.org/10.1007/978-3-7091-2624-0_3, URL: http://link.springer.com/10.1007/978-3-7091-2624-0_3.
[47] M. Frémond, Non-Smooth Thermomechanics, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-642-08578-9, 2002,

http://dx.doi.org/10.1007/978-3-662-04800-9, URL: http://link.springer.com/10.1007/978-3-662-04800-9.
[48] M. Frémond, Contact with adhesion, in: Phase Change in Mechanics, in: Lecture Notes of the Unione Matematica Italiana, vol. 13,

Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-642-24608-1, 2012, pp. 151–156, http://dx.doi.org/10.1007/978-3-642-

24609-8, 4. URL: http://link.springer.com/10.1007/978-3-642-24609-8.

32

http://dx.doi.org/10.1002/nme.857
http://doi.wiley.com/10.1002/nme.857
http://doi.wiley.com/10.1002/nme.857
http://doi.wiley.com/10.1002/nme.857
http://dx.doi.org/10.1007/3-540-45591-4_59
http://dx.doi.org/10.1016/j.cma.2013.07.008
http://www.sciencedirect.com/science/article/pii/S0045782513001783
http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://dx.doi.org/10.1016/j.engfracmech.2004.08.001
http://www.sciencedirect.com/science/article/pii/S001379440400195X
http://www.sciencedirect.com/science/article/pii/S001379440400195X
http://www.sciencedirect.com/science/article/pii/S001379440400195X
http://dx.doi.org/10.1002/nme.778
http://doi.wiley.com/10.1002/nme.778
http://dx.doi.org/10.1016/j.engfracmech.2004.12.008
https://linkinghub.elsevier.com/retrieve/pii/S0013794405000895
https://linkinghub.elsevier.com/retrieve/pii/S0013794405000895
https://linkinghub.elsevier.com/retrieve/pii/S0013794405000895
https://hal.archives-ouvertes.fr/hal-00938515
http://dx.doi.org/10.1016/j.ijsolstr.2004.05.029
http://dx.doi.org/10.1016/j.cma.2020.113652
https://linkinghub.elsevier.com/retrieve/pii/S0045782520308379
http://dx.doi.org/10.1002/nme.6531
https://onlinelibrary.wiley.com/doi/10.1002/nme.6531
https://onlinelibrary.wiley.com/doi/10.1002/nme.6531
https://onlinelibrary.wiley.com/doi/10.1002/nme.6531
http://dx.doi.org/10.1007/978-3-030-41057-5
http://link.springer.com/10.1007/978-3-030-41057-5
http://dx.doi.org/10.1016/j.compstruct.2015.07.080
http://www.sciencedirect.com/science/article/pii/S0263822315006261
http://dx.doi.org/10.1016/J.CMA.2009.08.025
http://dx.doi.org/10.1016/J.CMA.2011.08.021
http://dx.doi.org/10.1016/S0020-7683(00)00053-6
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb40
http://dx.doi.org/10.1007/978-3-642-10960-7_7
https://link.springer.com/chapter/10.1007/978-3-642-10960-7_7
https://link.springer.com/chapter/10.1007/978-3-642-10960-7_7
https://link.springer.com/chapter/10.1007/978-3-642-10960-7_7
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb42
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb42
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb42
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb43
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb44
http://dx.doi.org/10.5802/ogeo.2
https://opengeomechanics.centre-mersenne.org/item/OGEO_2019__1__A3_0
http://dx.doi.org/10.1007/978-3-7091-2624-0_3
http://link.springer.com/10.1007/978-3-7091-2624-0_3
http://dx.doi.org/10.1007/978-3-662-04800-9
http://link.springer.com/10.1007/978-3-662-04800-9
http://dx.doi.org/10.1007/978-3-642-24609-8
http://dx.doi.org/10.1007/978-3-642-24609-8
http://dx.doi.org/10.1007/978-3-642-24609-8
http://link.springer.com/10.1007/978-3-642-24609-8


N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545
[49] M. Frémond, Damage of solids glued on one another: Coupling of volume and surface damages, in: Phase Change in Mechanics, in:
Lecture Notes of the Unione Matematica Italiana, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-642-24608-1, 2012, pp.
115–130, http://dx.doi.org/10.1007/978-3-642-24609-8, URL: http://link.springer.com/10.1007/978-3-642-24609-8.

[50] M. Raous, L. Cangémi, M. Cocou, A consistent model coupling adhesion, friction, and unilateral contact, in: Computer Methods
in Applied Mechanics and Engineering, Elsevier, 1999, http://dx.doi.org/10.1016/S0045-7825(98)00389-2, URL: https://hal.archives-
ouvertes.fr/hal-03178187.

[51] Y. Monerie, V. Acary, Formulation dynamique d’un modèle de zone cohésive tridimensionnel couplant endommagement et frottement,
Rev. Eur. Élém. Finis 10 (2–4) (2001) 489–503, http://dx.doi.org/10.1080/12506559.2001.11869264, arXiv:https://doi.org/10.1080/
12506559.2001.11869264.

[52] F. Perales, F. Dubois, Y. Monerie, B. Piar, L. Stainier, A NonSmooth contact dynamics-based multi-domain solver, Eur. J. Comput.
Mech. 19 (4) (2010) 389–417, http://dx.doi.org/10.3166/ejcm.19.389-417, arXiv:https://doi.org/10.3166/ejcm.19.389-417.

[53] N.B. Nkoumbou Kaptchouang, Y. Monerie, F. Perales, P.-G. Vincent, Cohesive GTN model for ductile fracture simulation, Eng. Fract.
Mech. (ISSN: 0013-7944) 242 (2021) 107437, http://dx.doi.org/10.1016/j.engfracmech.2020.107437, URL: https://www.sciencedirect.
com/science/article/pii/S0013794420310080.

[54] M. Jean, V. Acary, Y. Monerie, Non smooth contact dynamics approach of cohesive materials, Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. A359 (1789) (2001) 2497–2518.

[55] C. Talon, A. Curnier, A model of adhesion coupled to contact and friction, Eur. J. Mech. A Solids (ISSN: 0997-7538)
22 (4) (2003) 545–565, http://dx.doi.org/10.1016/S0997-7538(03)00046-9, URL: https://www.sciencedirect.com/science/article/pii/
S0997753803000469.

[56] G. Del Piero, One-dimensional ductile-brittle transition, yielding, and structured deformations, in: IUTAM Symposium on Variations
of Domain and Free-Boundary Problems in Solid Mechanics, Springer, 1999, pp. 203–210.

[57] M. Charlotte, J. Laverne, J.-J. Marigo, Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A Solids
25 (4) (2006) 649–669.

[58] B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture, J. Elasticity 91 (1) (2008) 5–148.
[59] E. Lorentz, A mixed interface finite element for cohesive zone models, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-

7825) 198 (2) (2008) 302–317, http://dx.doi.org/10.1016/j.cma.2008.08.006, URL: https://www.sciencedirect.com/science/article/pii/
S0045782508002880.

[60] D. Doyen, A. Ern, S. Piperno, A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces,
ESAIM Math. Model. Numer. Anal. 44 (2) (2010) 323–346.

[61] K.D. Papoulia, Non-differentiable energy minimization for cohesive fracture, Int. J. Fract. 204 (2) (2017) 143–158.
[62] S.A. Vavasis, K.D. Papoulia, M.R. Hirmand, Second-order cone interior-point method for quasistatic and moderate dynamic cohesive

fracture, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 358 (2020) 112633, http://dx.doi.org/10.1016/j.cma.2019.112633,
URL: https://www.sciencedirect.com/science/article/pii/S0045782519305171.

[63] D. Doyen, A. Ern, S. Piperno, Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models,
Comput. Mech. 52 (2) (2013) 401–416.

[64] T. Crump, G. Ferté, A. Jivkov, P. Mummery, V.-X. Tran, Dynamic fracture analysis by explicit solid dynamics and implicit crack
propagation, Int. J. Solids Struct. 110 (2017) 113–126.

[65] F. Marazzato, Discrete Element and Time-Integration Methods for Elasto-Plasticity and Dynamic Cracking (Ph.D. thesis), Université
Paris-Est Marne-la-Vallée (UPEM), 2020.

[66] J.C. Michel, P. Suquet, An analytical and numerical study of the overall behaviour of metal-matrix composites, Modelling Simulation
Mater. Sci. Eng. (ISSN: 0965-0393) 2 (3A) (1994) 637, http://dx.doi.org/10.1088/0965-0393/2/3A/015, URL: https://iopscience.iop.org/
article/10.1088/0965-0393/2/3A/015https://iopscience.iop.org/article/10.1088/0965-0393/2/3A/015/meta.

[67] J.J. Moreau, Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 177 (3–4) (1999)
329–349, http://dx.doi.org/10.1016/S0045-7825(98)00387-9.

[68] M. Jean, J.J. Moreau, Unilaterality and dry friction in the dynamics of rigid body collections, in: A. Curnier (Ed.), 1st Contact
Mechanics International Symposium, Lausanne, 1992, pp. 31–48, URL: https://hal.archives-ouvertes.fr/hal-01863710.

[69] M. Jean, The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg. (ISSN: 00457825) 177 (3–4) (1999)
235–257, http://dx.doi.org/10.1016/S0045-7825(98)00383-1, URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782598003831.

[70] V. Acary, B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. applications in Mechanics and Electronics, in: Lecture
Notes in Applied and Computational Mechanics, vol. 35, Springer, Berlin, 2008, p. xxi, 525.

[71] R.W. Cottle, J.-S. Pang, R.E. Stone, in: R.E. O’Malley (Ed.), The Linear Complementarity Problem, second ed., Society for Industrial
and Applied Mathematics, Philadelphia, ISBN: 978-0-89871-686-3, 2009, p. 781, http://dx.doi.org/10.1137/1.9780898719000, URL:
http://epubs.siam.org/doi/book/10.1137/1.9780898719000.

[72] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Verlag, 1999.
[73] S.J. Wright, Primal-Dual Interior–Point Methods, SIAM, Philadelphia, 1996.
[74] V. Acary, Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact,

J. Appl. Math. Mech. / Z. Angew. Math. Mech. 96 (5) (2016) 585–603, http://dx.doi.org/10.1002/zamm.201400231, URL: https:
//hal.inria.fr/hal-01235240.

[75] V. Acary, O. Bonnefon, M. Brémond, O. Huber, S. Sinclair, An introduction to Siconos, Tech. Rep., INRIA, Grenoble, 2019.
[76] C.E. Lemke, J.T. Howson Jr., Equilibrium points of bimatrix games, J. Soc. Ind. Appl. Math. (ISSN: 0368-4245) 12 (2) (1964) 413–423,

http://dx.doi.org/10.1137/0112033, URL: http://epubs.siam.org/doi/10.1137/0112033.
33

http://dx.doi.org/10.1007/978-3-642-24609-8
http://link.springer.com/10.1007/978-3-642-24609-8
http://dx.doi.org/10.1016/S0045-7825(98)00389-2
https://hal.archives-ouvertes.fr/hal-03178187
https://hal.archives-ouvertes.fr/hal-03178187
https://hal.archives-ouvertes.fr/hal-03178187
http://dx.doi.org/10.1080/12506559.2001.11869264
https://doi.org/10.1080/12506559.2001.11869264
https://doi.org/10.1080/12506559.2001.11869264
https://doi.org/10.1080/12506559.2001.11869264
http://dx.doi.org/10.3166/ejcm.19.389-417
https://doi.org/10.3166/ejcm.19.389-417
http://dx.doi.org/10.1016/j.engfracmech.2020.107437
https://www.sciencedirect.com/science/article/pii/S0013794420310080
https://www.sciencedirect.com/science/article/pii/S0013794420310080
https://www.sciencedirect.com/science/article/pii/S0013794420310080
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb54
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb54
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb54
http://dx.doi.org/10.1016/S0997-7538(03)00046-9
https://www.sciencedirect.com/science/article/pii/S0997753803000469
https://www.sciencedirect.com/science/article/pii/S0997753803000469
https://www.sciencedirect.com/science/article/pii/S0997753803000469
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb56
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb56
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb56
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb57
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb57
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb57
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb58
http://dx.doi.org/10.1016/j.cma.2008.08.006
https://www.sciencedirect.com/science/article/pii/S0045782508002880
https://www.sciencedirect.com/science/article/pii/S0045782508002880
https://www.sciencedirect.com/science/article/pii/S0045782508002880
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb60
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb60
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb60
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb61
http://dx.doi.org/10.1016/j.cma.2019.112633
https://www.sciencedirect.com/science/article/pii/S0045782519305171
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb63
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb63
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb63
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb64
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb64
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb64
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb65
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb65
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb65
http://dx.doi.org/10.1088/0965-0393/2/3A/015
https://iopscience.iop.org/article/10.1088/0965-0393/2/3A/015/meta
https://iopscience.iop.org/article/10.1088/0965-0393/2/3A/015/meta
https://iopscience.iop.org/article/10.1088/0965-0393/2/3A/015/meta
http://dx.doi.org/10.1016/S0045-7825(98)00387-9
https://hal.archives-ouvertes.fr/hal-01863710
http://dx.doi.org/10.1016/S0045-7825(98)00383-1
https://linkinghub.elsevier.com/retrieve/pii/S0045782598003831
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb70
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb70
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb70
http://dx.doi.org/10.1137/1.9780898719000
http://epubs.siam.org/doi/book/10.1137/1.9780898719000
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb72
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb73
http://dx.doi.org/10.1002/zamm.201400231
https://hal.inria.fr/hal-01235240
https://hal.inria.fr/hal-01235240
https://hal.inria.fr/hal-01235240
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb75
http://dx.doi.org/10.1137/0112033
http://epubs.siam.org/doi/10.1137/0112033


N.A. Collins-Craft, F. Bourrier and V. Acary Computer Methods in Applied Mechanics and Engineering 400 (2022) 115545
[77] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J.
Numer. Methods Engrg. (ISSN: 00295981) 79 (11) (2009) 1309–1331, http://dx.doi.org/10.1002/nme.2579, URL: http://doi.wiley.com/
10.1002/nme.2579.

[78] N. Schlömer, Meshio: Tools for mesh files, 2022, http://dx.doi.org/10.5281/zenodo.1173115, URL: https://github.com/nschloe/meshio.
[79] A. Doitrand, P. Cornetti, A. Sapora, R. Estevez, Experimental and theoretical characterization of mixed mode brittle failure from square

holes, Int. J. Fract. (ISSN: 15732673) (2021) 1–11, http://dx.doi.org/10.1007/s10704-020-00512-9.
[80] L.B. Freund, Dynamic Fracture Mechanics, second ed., Cambridge University Press, Cambridge, 1998.
[81] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. (ISSN: 15206882)

36 (8) (1964) 1627–1639, http://dx.doi.org/10.1021/ac60214a047.
[82] J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, C. Geuzainet, Blossom-quad: A non-uniform quadrilateral mesh

generator using a minimum-cost perfect-matching algorithm, Internat. J. Numer. Methods Engrg. (ISSN: 1097-0207) 89 (9) (2012)
1102–1119, http://dx.doi.org/10.1002/nme.3279, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3279.
34

http://dx.doi.org/10.1002/nme.2579
http://doi.wiley.com/10.1002/nme.2579
http://doi.wiley.com/10.1002/nme.2579
http://doi.wiley.com/10.1002/nme.2579
http://dx.doi.org/10.5281/zenodo.1173115
https://github.com/nschloe/meshio
http://dx.doi.org/10.1007/s10704-020-00512-9
http://refhub.elsevier.com/S0045-7825(22)00536-9/sb80
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1002/nme.3279
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3279

	On the formulation and implementation of extrinsic cohesive zone models with contact
	Notation
	Introduction
	Formulation of extrinsic cohesive zone models with contact
	State variables, powers and principle of virtual power
	A non-smooth thermo-mechanics potential in the normal direction
	A linear evolution of the cohesion: triangle law

	Non-smooth elasto-dynamics of finite-dimensional systems
	Finite-dimensional systems via space-discretisation
	Non-smooth dynamics and impacts

	Numerical time integration
	Principles of the time integration scheme
	Well-posedness of the discrete LCP
	Discrete energy balance

	Numerical validations
	Quasi-static scalar case with elastic spring
	Dynamic cohesive zone model with elasticity
	Dynamic case with single elastic spring
	Dynamic double cantilever beam
	Rhombus hole specimen


	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Code and Data availability
	References


