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Abstract

An extrinsic cohesive zone model for mixed mode I and mode II fracture that encompasses contact and Coulomb friction is
developed in the framework of nonsmooth mechanics. The model is extended to include the effects of dynamics with impact and
sliding, and is discretised in time so that it can be written as a linear complementarity problem (LCP). The LCP is proved to have
a solution, subject to a condition on the size of the time-step. Finally, we study the behaviour of the LCP system numerically, by
observing the response of a simple test geometry to rapid loading, and observe the numerical method reproduces analytically
predicted and experimentally observed behaviours, without requiring impracticably small time-steps.

1 Introduction

Fracture mechanics is of wide interest in both theoretical and applied mechanics, as it plays an important role in phenom-
ena ranging from geological scales such as earthquake rupture (Ferry et al., 2025; Okubo et al., 2019) and avalanche initiation
(Bergfeld et al., 2021), to microscopic scales such as the behaviour of grains of sandstone (Jiang et al., 2021) under mechanical
loading or metal alloys (Auth et al., 2022) in high temperature environments.

The classical description of linear elastic fracture mechanics (LEFM) was given by Griffith (1921), and while this model re-
mains fundamental to how fracture is understood today, it suffers from significant problems. Most prominently, the stress
field diverges at the crack tip, rendering the model nonphysical in an area that is referred to as the “fracture process zone”.
Cohesive zone models (CZMs) were introduced by Dugdale (1960) and Barenblatt (1962), which served to regularise LEFM mod-
els by ensuring finite tractions across the incipient crack surface. The CZMs are described in terms of a traction—separation
law, and the total area under the graph of this law is equivalent to the critical fracture energy G. of LEFM. It is convenient
to describe the evolution of the interface in terms of the intensity of the cohesion, which we will denote 8 € [0, 1]. In the
following, we will take 8 = 1 to indicate a perfectly intact surface, while 5 = 0 represents a completely broken interface.

Cohesive zones are extremely difficult to observe experimentally, due to their generally small size (that can be on the or-
der of nanometres (Azab et al., 2020)) and the extremely rapid motion that is characteristic of fracture processes under all but
the most idealised conditions. Careful experimentation has allowed some direct observations to be made (Célarié et al., 2003;
Guilloteau et al., 1996) of classical fractures, while the discovery that frictional ruptures behave in ways that are analogous to
cracks allows another potential source of insight into the phenomenology of cohesive zones (Berman et al., 2020; Gvirtzman
and Fineberg, 2021). Given the difficulty that experimentalists have had in obtaining clear observations of the fracture process
zone, and hence in calibrating CZMs, typically calibration must be performed using sophisticated back-analysis of substantial
amounts of data observed at the structural level (Réthoré and Estevez, 2013; Vargas et al., 2020), and the particular values of the
material parameters such as G, the critical traction o, (at which softening commences) and the critical length ¢, (the point at
which the graph of the traction—separation law is zero) can vary substantially, depending on the details of the chosen model.
Further complications can arise when microstructural heterogeneity is present, which will change the deformation of the crack
front (Lebihain et al., 2022; Roch et al., 2023) and possibly require a larger set of parameters in order to be accurately modelled.

Cohesive zone models all ultimately derive from one of two families, intrinsic or extrinsic cohesive zone models. Intrinsic
models feature an initial elasticity, with the critical traction being obtained when the separation reaches the hardening length
0y, (Falk et al,, 2001). These elements are typically inserted into the mesh prior to simulation (whence their name, as they
are intrinsic to the mesh), which makes code parallelisation relatively straightforward (Nguyen, 2014). However, the cohesive
elements act like nonlinear springs due to their initial elastic branch, inducing a softening of the apparent stiffness of the struc-
ture. This phenomenon is referred to as artificial compliance, and it becomes more severe with increasing numbers of cohesive
elements (that is to say, the more we refine the mesh, the worse our results) (Falk et al., 2001). This difficulty can be somewhat
alleviated by increasing the initial elasticity of the cohesive law, but this in turn imposes unwanted costs on our simulation.
For quasi-static analyses (that typically use implicit integration), the stiffness results in very unstable numerical integrations,
while in dynamic analyses (that typically use explicit integration), the stiffness imposes such severe restrictions on the stable
time-step size that the method becomes essentially unusable (Nguyen, 2014). In both cases, having an elasticity associated with
the interface also allows for nonphysical results such as interface interpenetration, and hence negative displacement jumps, in
the case where the two surfaces are pushed back into contact (Acary and Monerie, 2006). Finally, it is not actually possible to
measure the stiffness across an interface before that interface exists, and as such whatever stiffness is determined is necessarily
an arbitrary numerical property rather than a real physical parameter, as is hinted at by the ease with which modellers are
willing to modify it to avoid artificial compliance.

Extrinsic models are characterised by an initial rigidity, and thus start to decohere only once the critical traction across the
surface is exceeded (Kubair and Geubelle, 2003; Seagraves and Radovitzky, 2009). Due to their rigidity, this family of models do
not effect the elasticity of the bulk, but they are typically inserted into the simulation on-the-fly (whence their name, as they
are extrinsic to the mesh) (Zhou and Molinari, 2004). Given the absence of artificial compliance, extrinsic models are typically
used for dynamic analyses (Dureisseix et al., 2024), but great care must be taken to ensure the time-continuity of the system.
Failure to do so typically results in spurious oscillations of the system or an inability to converge in time (Papoulia et al.,



2003; Sam et al., 2005), but sufficiently sophisticated formulations are able to guarantee correct behaviour (Cazes et al., 2013).
While extrinsic models do not demonstrate the pathological mesh-dependency that is characteristic of intrinsic models, the
large number of elements and remeshing required to fully resolve the system for arbitrary crack paths is generally impractical,
and so simulations are often not fully converged. The use of more sophisticated finite element techniques such as extended
finite element (Moés and Belytschko, 2002) or discontinuous Galerkin (Versino et al., 2015) may lead to truly mesh-independent
results, but come with their own implementation difficulties.

Regardless of how highly-refined the mesh is, cohesive zone models are still subject to difficulties related to ill-posedness
(Foulk, 2010). In particular, in quasi-static simulations, solution jumps can appear in “soft” systems where the system stores
more energy elastically than the cohesive zone is able to release by fully decohering (Acary and Monerie, 2006). In order to
try and maintain well-posedness, researchers have either turned to sophisticated finite element schemes (Samimi et al., 2011)
or viscous regularisation (Chaboche et al., 2001), however in our previous work (Collins-Craft et al., 2022) we were able to
show that for pure mode I fracture and contact problems, working in dynamics (with a small enough time-step) is sufficient to
maintain a well-posed problem.

While (carefully implemented) extrinsic models demonstrate desirable behaviour under monotonic loading, in more realis-
tic loading cases such as those generated by multiple impacts or complex stress waves, cohesive elements may experience
partial decohesion before being subject to unloading and reloading cycles. Almost all existing extrinsic cohesive zone models
possess an elastic unload-reload branch (e.g. see Bybordiani and Dias-da-Costa (2021), Camacho and Ortiz (1996), Parrinello
(2020), Parrinello and Borino (2020), Sam et al. (2005), and Snozzi and Molinari (2013)), and such models can be described as
being “shifted intrinsic models”, as they have the same underlying mathematical structure as intrinsic models (Kubair and
Geubelle, 2003). These shifted intrinsic models can demonstrate all the same pathologies as classical intrinsic models, as the
elasticity of the unload-reload branch induces the same artificial compliance, and allows the same nonphysical behaviour such
as interface interpenetration, and can have an arbitrarily large value for small amounts of decohesion. As such, there is a strong
motivation to formulate extrinsic cohesive zone models that completely eliminate this unload-reload elasticity, and guarantee
physically correct behaviour regardless of the loading history.

The correct mathematical framework in which to develop such extrinsic cohesive zone models is convex analysis, and in par-
ticular we follow the works of Jean-Jacques Moreau, who both developed and applied this mathematical framework to create
nonsmooth mechanics (Moreau, 1970, 1974, 1986). This formulation requires a careful specification of the energy and pseudo-
potential of dissipation using indicator functions of convex sets, which are nondifferentiable functions. Using this framework
allows the development of thermodynamically admissible evolution laws for the system that can include unilateral constraints
on the internal variables and their rates (Halphen and Nguyen, 1975; Houlsby, 2019; Marigo, 1981). This formulation has been
extended to cohesive zone modelling by Michel Frémond (Frémond, 1988, 2002, 2012a,b), which has in turn been extended in
various ways for intrinsic cohesive zone models (Acary and Monerie, 2006; Chaboche et al., 2001; Monerie and Acary, 2001;
Nkoumbou Kaptchouang et al., 2021; Perales et al., 2010; Raous et al., 1999), but which has only been minimally exploited for
the development of extrinsic cohesive zone models (Jean et al., 2001; Talon and Curnier, 2003).

In our previous work (Collins-Craft et al., 2022), we used the nonsmooth mechanics framework to specify a mode I (open-
ing mode) cohesive zone model that also included contact. Using this formulation, the model could be straightforwardly
constrained to only admit physical solutions (i.e. the cohesion variable § € [0, 1] is strictly enforced, interface interpenetration
is strictly forbidden), and in addition succeeded in eliminating the unload-reload elasticity from the formulation. The problem
was then reformulated in terms of dynamics, and the discrete-in-space-and-time problem was able to be written as a linear
complementarity problem. This problem formulation is particularly favourable, as it enabled a proof of the well-posedness of
the problem, and is able to be numerically resolved in a very efficient manner, with comparatively large time-steps. The aim of
this paper is to extend the mode I model to mixed modes I and II (opening and sliding modes) fracturing, and include contact
and Coulomb friction in the formulation. The presence of tangential cohesion and friction substantially complicates the analy-
sis and implementation of the model, and demands the exploitation of further mathematical results beyond those required for
the mode I model.

Novelty of the contribution and outline of the article. The novelty of our work is that we formulate an extrinsic cohesive
zone model that:

1. is based on nonsmooth thermo-mechanics principles, takes into account inertia and the inequality constraints on state
variables and their rates such as unilateral contact and irreversibility and has a straightforward unload-reload behaviour
that avoids any of the problems of shifted intrinsic model structures, and

2. accounts for both pure mode I and pure mode II fracture as well as mixed mode fracture without any mathematical
singularities when the displacement jumps are zero, and

3. includes the contact and friction problem within the same mathematical framework as the cohesive zone problem,

and a numerical algorithm that benefits from the following properties:



1. animplicit time-stepping scheme that is consistent with the nonsmooth contact dynamics approach that uses the Moreau—
Jean scheme, that is dissipative in discrete time in the presence of friction and impacts, and energy-preserving in their
absence, and which provides a stable numerical scheme at reasonably large time-steps, and

2. alinear complementarity problem formulation for the space-and-time-discretised problem with a proof of the existence
of the solution that solves all of the constraints in an implicit manner, that in practice avoids solution jumps that occur
in quasi-statics for models that are not regularised by viscosity or higher-order deformations, and

3. a formulation as a monolithic complementarity problem that allows the exploitation of efficient and robust algorithms
developed by the mathematical programming community for this class of problems.

Finally, we demonstrate the practical interest of our approach by applying the model to some pertinent example systems and
observe that the results match the expected physical behaviour.

2 Formulation of extrinsic cohesive zone models with contact and friction

First, we define the state variables of our model, and the corresponding powers associated with them. Then, using the principle
of virtual power, we express the equilibrium equations and boundary conditions for our system. We then specify a particular
constitutive model, study the continuous-time energy balance, and demonstrate its analytical solution for a single contact point.

2.1 State variables, powers and principle of virtual power

We consider a body 2 € R®. The current position is defined by the vector 2 and the initial position by X. We consider that
the mechanical properties and the geometry of the body do not vary with x3 (i.e. we are in the plane strain or plane stress
condition), and so we consider only the behaviour of the system with respect to @ = [z1, z2] and treat the system as if it were
two dimensional ie. 2 € R?. We then define a vector of the displacement u(x) = = — X, from which we obtain the velocity
v(x) = 4(x). We consider that the body is initially undamaged, and hence at a point & € €2, the displacement u(x) and
the velocity v(«) are continuously differentiable functions of x. When an interface is created by the process of fracture, two
material points x; and x, are defined by splitting the bodies assuming that they correspond to the material point X initially.
For ease of notation, we denote ; by . The displacement jump that characterises the crack is defined by the difference in
the position of the material point that was at X initially, with respect to « and «,, that is [u(x, z,)] = u(x,) — u(x). We
define an orthonormal local frame on the interface defined by (x,n,t) where n € R? is the normal unit vector from z to-
wards @, and the vector ¢ € R? gives the tangential direction along the fracture surface. In this work we consider the normal
displacement (jump), defined by uy(x, z,) = [u(x, ;)] - n € R, and the tangential displacement (jump) in the along-crack
direction, defined by u.(x, ) = [u(x, x,)] - t € R. The relative normal velocity (jump in space) is given by vy = iy, while
the tangential velocity (jump in space) is given by vy = ;.

To describe the state of the cohesion we introduce the cohesion variable S(x) € [0, 1], using the notation introduced by

Frémond for describing the intensity of cohesion. For a point « on the interface, the power of the cohesion for a surface I' is
defined by

Pcoh :AﬁAdm> (2)

where we have introduced A which is the thermodynamic dual force (driving force) associated with 5. Now, over the same
surface, the power of contact is given by

Peon = / (oxry + vpry) d, ®3)
r
where 7y is the normal reaction force related to the stress o (x) at the interface by ry = —o - - m, and r; is the corresponding
tangential reaction force 7, = —o - n - t.

For the material in €2, the power of the external, internal and inertial forces are respectively given by

Pextz/v-fdx—/ ’U-TdZC—/B@d.T, (4)
Q Tar T
Pint:—/a:édx—f—/erNdx+/vTerx+/BAdx, (5)
Q r r r
’Paccz/pv-'bdx, (6)
Q

where f is the body force in €2, T is the surface traction on I'ss (i.e. the region of the surface where the Neumann boundary
condition is applied), © is an external force that does work on the cohesion (such forces can occur due to thermal or chemical



effects) that we take to be identically zero in this work, € is the strain in €2, p is the density and © is the acceleration.

The principle of virtual power states that for any virtual velocities ¥, & and /3, we have

,ﬁacc = 7ext + 75in'rv
/pz';-i;dxz/ﬁ-fdx—/ 6-de—/59dx—/a:?:dac—i—/(@NrN—i—T)TrT)dx—&—/BAdx. (7)
Q Q Ty r Q r r

For further details, a rigorous mathematical treatment of this principle may be found in Frémond (1988). Given sufficient
smoothness assumptions on the fields, the equations describing the equilibrium and boundary conditions of the system are
given by localisation as:

V-o+f=p0 inQ,
A=0=0 onT,

T=0-n only,

8)
u=up onlp,
rw=—o0-n-n onl,
rm=—0o-n-t onl.

where I'p is the region of the boundary on which the Dirichlet boundary condition is applied and up is the prescribed dis-
placement.

2.2 A nonsmooth thermo-mechanics potential

In defining our model, we begin by defining a ratio between the critical shear traction to the critical opening traction. Then,
we write the free energy potential for the bulk and surface, from which we derive the state laws. By specifying a dissipation
pseudo-potential, we obtain the laws describing the irreversible behaviour, and thus we are able to describe the complete model
as a complementarity problem. Finally, we then describe the energy balance of the system, from which we obtain an expression
for the fracture energy.

Critical traction ratio. We start by firstly introducing the ratio of the critical shear traction to the critical opening traction
Oc,n
==

as a convenient expression of the anisotropy of the cohesive strength (Xu and Needleman, 1994). From hereon, we
Oc,1

denote o, by o, for the sake of notational simplicity.

Free energy and reversible state laws. We consider the free energy of the system, from which we obtain the laws describing
the reversible behaviour of the system. The total free energy ¥ of the system is the sum of the free energy in the bulk with the
free energy of the surface:

U= / U.(g) da:—l—/ U (uy, ur, 8) dz, 9)
Q r
where ¥, and W are the volume and surface free energies, respectively. As we consider an elasto-brittle system in this work,

we will assume that all strain is elastic. Firstly, the stresses may be obtained by assuming a classical linear elastic potential for
the bulk:

U, (e) = %e 3 SR (10)
o(e) = 8\156(5) =FE:e¢, (11)

where F is a fourth order stiffness tensor. The stress-like variables for the surface are similarly derived from the surface
potential by

—ry € a’U.N\IIS(uNauT75)a
_T; S 8’Ufr\IjS(uN7uT75)7 (12)
A" e 6B\Ijs(uN7uTaﬁ)7

where 7}, is the reversible part of the normal reaction force, 7} is the reversible part of the tangential reaction force, and 0y,
Ou, and Og indicate the subdifferentials with respect to uy, u; and 3 of a convex (in each individual variable) but nonsmooth
potential. The first assumption in our model is that the normal displacement is constrained to be positive, i.e. uy > 0, which



is enforced as a unilateral constraint, while the cohesion variable is constrained to be 0 < § < 1. Under these constraints, a
rather generic form of the surface free energy may be specified by

\IIS(quuTvﬂ) = w(uNauTvﬂ) +I]R+ (UN) +I[0,1] (B)a (13)

where Z¢ is the indicator function of a convex set C. In order to obtain an extrinsic CZM, the model must have no tangent
stiffness when uy > 0 or |u;| > 0. This constrains the possible forms of (13) to those functions that fulfil the conditions

2 2
gu:b = 0and g)u:/; o = 0. One such free energy is given by
\Ijs(qu Ur, B) = ﬂUCUN + BUC’Y|UT| —+ wf(ﬁ) + I]R+ (UN) + I[O,l] (5)’ (14)

where w > 0 is the surface free energy which is released by decohesion and f(3) is a function that parametrises the evolution
of 8 as decohesion progresses. The state laws in their specific form are then obtained by applying (12) to (14):

—(rl + Boe) € OTr+ (uy),
—r} € Bocy0|ual, (15)
—(A"+ ocuy + oey|ud| +wf(B)) € az[0,1] (B)-

The surface free energy U is not in general a convex function of its arguments (uy, ., 3). However, U, is separately convex
with respect to uy and u,. So long as we respect the condition f ”(ﬂ ) = 0, ¥, will remain convex with respect to 3. However, as
we show in Remark 2, this does not imply convexity of W. The continuous part of the free energy in (14) is composed of three
terms. The first two terms So.uy and So.7|u;| account for the potential energy of the normal and tangential cohesive forces
Bo. and fo.7 in the displacement field given by uy and u;. The third term w f () accounts for the surface free energy released
by decohesion at a given 3. We also place certain constraints on the form of the function f. When the interface is intact and
B = 1, we require that f(1) = 0, as there cannot be any free energy on a surface that does not yet exist. When the interface
is fully broken and 8 = 0, the cohesive free energy w must have been completely released, and hence f(0) = 1. Finally, the
release of the cohesive free energy with 3 must be monotonic, and hence f’(/3) < 0. Given these conditions, and provided the
minimum of f is attained at 5 = 1, f will be suitable for our purposes. In this work, we propose a triangle cohesive law that
fulfils these requirements, although other shapes that satisfy these requirements are also possible.

Dissipation pseudo-potential and irreversible processes. In order to respect the second law of thermodynamics, we
define a dissipation function describing the irreversible part of the decohesion process under isothermal conditions:

D =P — /Q \115(6) da — /F lIIS(quuT’B)' 1)

This function must be non-negative for all admissible values of the state variables. In order to be able to compute the time
derivatives of a nonsmooth and nonconvex pseudo-potential, we must make certain assumptions. The functions wuy(t), u.(t)
and 3(t) are assumed to be absolutely continuous, and hence they have a derivative almost everywhere but not necessarily at
any given point. As absolutely continuous functions have bounded variations, the left and right derivatives exist for all of these
functions. Assuming W, is convex in wuy, 4, and in 3 separately, and W, (uy, ur, 3) is also an absolutely continuous function for
uy = 0, Jus| = 0,8 € [0, 1], a result in Frémond (2002, Appendix A.1.9) provides us with the following inequality:

\i/s(uN7 Ur, 6) g _UNTL - ’UTT; - BAY7 (17)

for any 7, r} and /3 that satisfies the inclusions in (15). Now, substituting this inequality into the definition of the dissipation
rate given by (16)

D> / o:édx — / (erN + v + 5A> dx — OV(e) édx + / (UNrL + vy + BA“) dx. (18)
Q r o Oe r

In (18), the terms integrated over the bulk €2 cancel out. Considering only the surface I', we obtain
D> / (—UNTN — Uy — BA + ugry + vy + BAr) dx. (19)
r

Since the laws of thermodynamics strictly require that D > 0, we will assume that
—UNTy — Uy — BA + oy + vy + BA" > 0, or equivalently, — vyl + vl — BA” >0, (20)

where we have exploited the standard decompositions ry = 7% 4 7", 7 = 77 4+ 7" and A = A" + A" for the irreversible
parts of the stress-like variables. We may guarantee that this mequahty will be respected by specifying a proper closed convex
pseudo-potential of dissipation ®(vy, vy, 8), from which the irreversible stress-like variables may be derived:

_rli\rr S a’qu)(vNa Vg, 5)7

_T-irr S a'UT(b(Umvta 6)7 (21)
—Ar e 85¢(UN,vt,B).



For reasons of simplicity, we will assume that the dissipation process of fracture depends exclusively on the rate of 3, and that
it does so in a linear way, resulting in a rate-independent dissipative behaviour. However, we also wish to include the effects
of frictional contact in our model. To do so, we specify the pseudo-potential of dissipation as

®(vy, vr, B) = Ir- (B) + plry + Boe)|vl, (22)
where the last term is the standard pseudo-potential associated with the Coulomb friction and p is the dynamic coefficient of
friction. We assume that the static and dynamic coefficients of friction are identical. This model of dissipation imposes that the
evolution of 8 must decrease with time, i.e. S < 0. The dissipative laws are thus

—rir =0,
_TiTr € /’(‘(TN + 600)8‘1}1“7 (23)
— A" € 0T (B).
We may also write the last line of (23) as
B € 0T+ (—A"), (24)
which allows us to interpret that A" is the force that drives the evolution of B In (8), A = 0, so as a consequence A" = —A",
and hence we may conclude
B € 0T+ (A). (25)

Remark 1. The dissipation pseudo-potential in (22) can be straightforwardly generalised to generate models that are rate-dependent
for the decohesion process, the frictional sliding, or both, by making the dissipation nonlinear in the relevant dissipative variable
(see Acary and Monerie (2006) for further details).

Remark 2 (Nonconvexity of W). Even if we consider that f(3) is convex, U is not a priori a convex function. Let us consider
here that B € (0,1) and uy > 0. The surface free energy reduces to

\I/s(um Ur, 6) = "/)(UM Ur, 6) = Bocuy + ﬁo'c’ﬂurl + wf(ﬁ)a (26)
from (15) and the assumption that 5 € (0,1). Let us consider that we have an evolution with B <0, then—A" = A" = 0 and
from (30), we get

Ocuy + 06’7|UT| = _wf/(ﬁ) (27)

which is the equation that gives the decohesion curve that relates 3 to the displacement jump. In this case, the surface free energy
reduces to

U (uy, ur, B) = w(f(B) — Bf'(B)) = 9(B). (28)
Computing the second derivative of the function g(3) yields
9" (8) = —w(f"(B) + 8" (B))- (29)

Assuming that [ is strictly convex (f" (8) > 0) and at least C*, we can remark that g" (8) < 0 for small values of 3. We conclude
that U can be nonconvex while being separately convex in f3.

Complete extrinsic cohesive zone model. We start by noting that since 7/ = 0, we must have r, = 7! Thus, the complete
model of the interface is given by

B € OTp+ (A",

—(ry + Bo.) € 0Ir+ (uy),

—r} € foy0|uxl, (30)
=" € pu(ry + Boe)dlv,

—(A"+ ocuy + oey|ud| +wf(B)) € aI[0,1] (B).

Formulation of the model using slack variables Introducing the slack variables £, A and denoting the contact forces by
rg = ry + fo., we may write

B ==X A"+ ocuy + O—C’Y|UT| + wf/(ﬂ) =g, Tﬁ =ry+ fBoe, 77"5 € Nr+ (UN)a

‘ (31)
_§ € N[O,l] (ﬁ)7 A€ N]R+ (Ar)v —Ur € N[—,Bou'y,b’o’c’y] (7"{.), —Ur € N[—urf“urﬁ] (’r-lrr)~

In our previous work (Collins-Craft et al., 2022), we showed that while the £ constraint is seemingly two-sided, one of the sides
is redundant i.e. 8 < 1 does not need to be enforced, only 8 > 0. Hence, we may in fact write —¢ € N+ (), which simplifies
the problem somewhat:

B==X\ A +oau+oy|ul+wf (B)=¢ ré=r+Bo., 0715 Luy >0, (32)
(

0<ELB=20, 0KSALA >0, —u €N_goory,80.](1]), —Ur€ N{— g s Py,

T



Energy balance With the chosen constitutive laws, the power of internal forces can be written as

’Pint:—/zs:E:zi:dac—i—/TNdeac—i—/rTdem—i—/ABd:E7
Q r r r

d )
T (/Qs.E.sdx>—|—/F(7“NUN+7‘TUT+A6)dx,

- —Z/.{ + Ps,inta (33)

where U is the potential elastic strain energy, and P; i, the power of surface internal forces defined by Py jnt = / Dsint d2
r

with pg int = rUx + 7rUr + AB. Now;, let us expand ps it

Ds,int = T'\Uy + 71U + AB,
= vy (rfj + r;) + v (r‘; + r;) + 8 (A” + A') ,
= wyTy, + vrry F BA" + O 4 ol 4 BA™,
= gt o+ BAT 4 v (34)
where in order to pass from the second-last to last line we have exploited that rf = 0 and BAT =0 using (23). The last term
of (34) is the frictional power
vy = —prfor] = —p(ry+ Boc)lvil, (35)
since —!" € u(ry+ Bo.) sgn(v;). The idea is now to relate the power of the surface internal forces, minus the frictional power,
to the rate of the free energy. When the free energy is smooth, the following chain rule is used

N N o

w :’UNTUN—"_UTQUT + % (36)

Since in our case, the free energy is nonsmooth we will assume that the following chain rule is valid

d‘} = UNauNd) + UTauH/J + Baﬁdja (37)

almost everywhere. Demonstrating this rule would require some technical mathematical developments (see for instance Bolte
and Pauwels (2021)) that are outside the scope of this article. Using the constitutive relation for the reversible processes in (12),
we obtain

= —ugrt — vt — BA" (38)
From (34) and (38), the relation between the power of surface internal forces and the rate of the free energy is given by
Ds,int = T\Ux + TrUr + AB = v.rriTr — 1/) almost everywhere. (39)

Hence, we are able to conclude that the the power of the surface internal forces is almost everywhere

Ps,int = /F (vTriTr — ¢) dx. (40)

Then, we can apply the principle of virtual power for the velocities of the system to write the balance equation for the kinetic
energy K, almost everywhere given by K = Pext + Pint. Then, substituting in (33) and (40) we arrive at the expression

K+U+ /1‘ (w — vTriTr) dx = Pey. (41)

We apply the first law of thermodynamics and assume isothermal conditions, which results in the energy balance K +& = Pey,
where £ is the internal energy. It is then straightforward to substitute the kinetic energy balance and (33) to arrive at

£ = P = /F (u} - wi;) dz +U. (42)

Let us define the fracture energy as the opposite of the work done by the cohesion forces

g = // Bocvy — vy da dt. (43)
r



To relate the fracture energy (43) to the rate of change of the free energy 1/) we expand further the equation (38) using the
constitutive relations

1/) = —U\Ty — VT — BAY,
= —uy(r§ — Bo.) — vyl + BA",
= —ury + wfoe — vy, (44)

since BA" = 0 using the last line of (23). Since —7 € N+ (uy), it is also possible to show that vyrg = 0 almost everywhere
and we conclude that ¥ = vyfo. — v, and

g://ryldxdt (45)

The dissipated energy by friction is denoted by

]:z//—vTriTrdxdt. (46)
r

as the opposite of the work done by the friction force. We can then write the incremental energy balance of the system as

to
AK + AU+ AG + AF = Pext dt, and AE = AU + AG. (47)

t1

Remark 3. The relation (45) allows us to conclude that to pass from an intact interface with uy = 0, u; = 0 and 8 = 1 to a broken

interface with f = 0 on I', we must have AG = | wdz.
r

2.3 A linear evolution of the cohesion: triangle law

In order to obtain a specific cohesive zone model from our general framework, we specify the exact form of the surface potential.
This potential must fulfil certain conditions, namely that when the surface does not exist, i.e. uy = 0, uy = O and § = 1,
U, = 0, and that when the surface is fully decohered, i.e. 5 = 0, Vs = w. We assume that this decohesion is complete when
the displacement jump has surpassed a critical length d. > 0, which can be different in each direction. Choosing

w = %UC,Iéc,N = %UC,II(SC,T = %Uc,ﬂ’&cﬁ =G, (48)
7(8) = (812,
fulfils the required conditions for the energy while ensuring that the potential remains convex in . As the fracture energy is
constant in both directions and oy = 0.y, we also have d.r = d¢x/7.

Remark 4. Our formulation for (48) is essentially determined by our conceptual framework, where we consider fracture in elasto-
brittle systems to be a process of transforming bulk strain energy to surface energy and kinetic energy. As such, the energy of a
surface cannot be determined by the type of fracture that formed it (i.e. mode L, Il or III), and thus there can be only a single value of
G for the material. This does not prevent different values of the critical traction in each direction, but the critical opening distance
must in turn adjust to maintain a constant G.. Such a formulation is common with other authors that adopt a similar energetic
picture to us e.g Talon and Curnier (2003) or Lorentz (2008). It is certainly possible to have different values of G. depending on the
fracture mode, such as in the seminal paper of Camanho et al. (2003) or more recent works in the same framework (Venzal et al.,
2020). Differing values of G. depending on the mode implies that significant plasticity is being captured by the cohesive zone model.

While 8 € [0,1] and B<0,A=0and& =0, meaning that after substituting the form (48) into the expression for A" in

(32), we obtain f =1 — %ﬂuﬂ Substituting the displacement-cohesion law into the free energy (14), we get:
C,N
Oc 2 Uy + YU
Uy (un, ur) = e (U + Y]uq]) — . (un + Yurl)” + Ip+ (un) + Zjo 1) (1 - W) : (49)

The linear evolution of 3, obtained as a consequence of (48), is depicted in Figure 1.
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Figure 1: (a) The shape of the surface potential U, with respect to 5. (b) The consequent linear evolution of 5 with u,, assuming
uy = 0. (c) The shape of the surface potential ¥ with respect to u;, assuming uy = 0, where the initial slope is equivalent to
the value of 0.7, and the final value is w.

The model is now specified for a triangle law by inserting (48) in (32):

B ==\, Jc(sc,N(ﬁ - 1) + A" +ocuy+ UC’V|UT‘ =¢, Tﬁ =71y + ﬁac, 0< Tﬁ Luy =0, (50)
0<ELB=20, 0KALA 20, —u € N[_,gﬂc,yﬂgc,y] (T;), —vr € N[—HT{}MT{}] (TiTr).

Analytical expressions for an experiment with a given driven tangential displacement The model in (50) is suffi-
ciently explicit to study analytically. Let us assume that 5(0) = Sy < 1, and that v, is a function of time ¢ given by the
following piecewise linear function:

3 for0<t<1,
o) =4 -1 forl1<t<2, (51)
% for 2 < ¢,
which produces the tangential displacements
%t for0 <t <1,
ur(t) = 1-1t for1<t<2, (52)
—1+4 3t for2<t,

assuming u.(0) = 0, and where the displacement u, is measured in mm, and the time ¢ in ms. The time integration of the
model described in (50) leads to the following piecewise linear response, where we use 0. = 0.5 MPa, 6.y = 1 mm,y = 1 and
a friction coefficient © = 0.5. We assume that the evolution is continuous, and that vy = 0 i.e. that the system is always in
contact.

« First loading phase 0 <t <1
Since v;(t) > 0 fort € [0, 1), the dissipative frictional force is 7' (t) = —urS(t). Similarly, since u(t) > 0, the tangential
cohesive force is ri(t) = —((t)o.7. Let us assume that §(¢t) > 0 for ¢ € [0,1). We deduce that £(¢) = 0. Let us note
that A"(0) = —0cden(Bo — 1) — o¢y|ur(0)] = 0. Let us assume that A() = 0,¢ € [0,¢], ¢ > 0 or equivalently
B(t) = 0,t € [0,e], e > 0. In that case, we get A"(t) = —oeyv:(t) < 0 and then A'(¢) < 0, fore > 0 which is

. (t
impossible as A" is constrained to be non-negative. Let us try with 5(t) < 0, then A"(¢) = 0 and 8(¢t) = 1 — LRl

c,N

and B(t) = —’y:;T(t) < 0. Since f(1) =1 — 2; > 0, this is the only consistent solution for ¢ € [0, 1).

 Unloading phase1 <t < 2
Since v,(t) < 0 for ¢ € [1,2), the dissipative frictional force is 7" (t) = prS(t). Similarly, since u(t) > 0, the tangential
cohesive force is 75(t) = —f5(t)o.7y. Let us assume that §(¢) > 0 for ¢t € [1,2) and £(t) = 0. Let us assume that \(¢) =
0, t € [1,2) or equivalently 3(t) = 0. In that case, we get A"(t) = —o.yv.(t) > 0. Hence A'(t) = —0.0en(B(1) — 1) —
ocy|ur(t)] > 0. This solution satisfies the complementarity condition up to ¢ = 2.

« Second loading phase2 < t
Since v.(t) > 0 for t > 2, the dissipative frictional force is 7"(t) = —pur<(t). Similarly, since u.(t) > 0, the tangential
cohesive force is 7.(t) = —f(t)o.y. Let us assume that 5(t) > 0 for t € [t1, t2) and £(t) = 0. Let us assume that
At) = 0,t € [2,2+4 €], & > 0 or equivalently 3(t) = 0. In that case, we get AT(t) = —oeyv.(t) < 0 and then
A'(t) = —00en(B(1) — 1) — ocy|ur(t)| which is positive for ¢ < 3. For ¢t > 3, the only possible solution of the

+ (¢ . . . (¢
_ault) < 0 and A'(t) = 0. The cohesion variable 3 is then 5(t) = 1 — e (®)]

c,N

complementarity leads to 3(t) =

c,N
which is positive for ¢ < 4. For t > 4, the solution is 8(t) = 0, A"(¢) = 0 and £(t) = ocyur(t) — 0cden.
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As we are interested in the tangential response, we will simulate the system as if some normal pressure is being applied by
setting ry(t) = 1 + S(t)o. MPa, in order to consistently obtain a frictional force. The solution of this experiment is depicted
in Figure 2.
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Figure 2: Illustration of the extrinsic cohesize law with a linear evolution of cohesion. (a) The displacement u; as a function
of time ¢. (b) The cohesion (3 as a function of time t. (c) The slack variable A as a function of time t. (d) The slack variable
¢ as a function of time ¢. (e) The thermodynamic driving force A" as a function of time. (f) The cohesion ( as a function of
displacement u;. (g) The slack variable r as a function of time ¢. (h) The reversible tangential force . and the irreversible
tangential force " as a function of time ¢.

Remark 5. When the interface has fully decohered, we retrieve a standard unilateral contact model with Coulomb friction. This
model separates clearly cohesion and friction, while treating them within the same framework. While the presence of cohesion can
effect the normal confining force, and exerts an additional restoring force to move the system back towards the u, = 0 state, the
frictional force in and of itself depends only on the direction of sliding. This is in contrast to other models wherein the frictional
resistance depends not only the sliding direction, but also on the value of u; (e.g. see Raous et al. (1999) or Parrinello and Borino
(2020) as two examples among many).
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3 Nonsmooth elasto-dynamics of finite-dimensional systems

Now, we will extend our model to consider bodies with finite numbers of degrees of freedom, which may possess masses and
stiffnesses, and to which external forces may be applied. These degrees of freedom may form part of a cohesive zone, but equally
may not. We also consider the dynamic interaction of multiple bodies via the formulation of impact laws for the system.

3.1 Finite-dimensional systems via space-discretisation

We start by considering a finite-dimensional model of a linear elastic mechanical system, of the sort which may arise after a
space-discretisation using the finite element method (FEM). Let us note by u € R™ the displacements of the system and v = u
the velocity. Starting from the principle of virtual power (7), the equilibrium equation can be written as

Mio+Ku=F, u=wv, (53)

where M € R™*" is the mass matrix, assumed to be symmetric positive definite, K € R"*" is the symmetric positive semi-
definite structural stiffness matrix and £’ € R" is the external applied force.

Let us now add that the cohesive zone is applied on a finite set of cohesive contact points that are indexed by a € [1,m].
We will work in a system of small perturbations, and hence the local normal displacements at contact uy = col(ug, o € [1, m])
are related to the displacements u by a linear relation written as

Uy = Hyu + by, (54)

where Hy, € R™*" is a selection and interpolation matrix for the degrees of freedom and b, € R™ is a linear adjustment
to express misalignment between nodes. In a similar fashion, the local tangential displacements at contact u, = col(uy, o €
[1,m]) are related to the global displacements u by

uy = Hyu + by, (55)

where H; € R™*" is a selection and interpolation matrix for the degrees of freedom and b; € R™ is another linear adjustment
expressing misalignment between nodes. Collecting all variables at contact in the same way (x = col(z®, « € [1,m])), the
equilibrium equations of the system are given by

. (56)
w=wv, uy=Hw+by, Hu+ b,

{M®+Ku = F+ H] Sry+ H] Sr.,
coupled with (50) to describe the cohesive zone behaviour. The matrix S € R™*™ is a diagonal matrix that contains the
tributary area of each cohesive zone node after space-discretisation of the interface. For the sake of simplicity, we assume that
the parameters of the cohesive zone model do not depend on «, but this can be straightforwardly extended.

3.2 Nonsmooth dynamics and impacts

In the presence of unilateral contacts, solutions of finite-dimensional dynamical systems with a mass matrix with finite masses
associated with degrees of freedom may exhibit jumps in velocities. In this context, the nonsmooth dynamics must be carefully
treated to obtain a consistent time-discretisation (Moreau, 1999). The velocity is considered as a function of bounded variations
and we denote by v~ and v the left and right limits of v with respect to time. We introduce the equations of motion of a
discrete (finite-dimensional) mechanical system with reactions at contacts written in terms of differential measures by

{Mdv+Kudt = Fdt + H] diy+ H, dis, )

U=,

where dv is the differential measure associated with the velocity v, diy is the measure of the normal reaction at the contact, and
di; is the measure of the tangential reaction at the contact. Almost everywhere (with respect to dt), the system is non-impulsive
and is equivalent to the dynamics in (56). It follows that the densities of di; and di, with respect to d¢ are given by
= Sry = S(r§ a9 g = S(r e, dtal h
o= (re — po.), an 3 == (ri+ry), dt-almost everywhere. (58)
To simplify the system in view of numerical time integration, we split the contribution of the cohesion and the contribution
of unilateral contact and friction. To this aim, we introduce two measures di; and di{ such that the density with respect to dt
satisfies

dig

d—; = Srg, and

dis 4
i Sry, dt-almost everywhere. (59)
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This yields

diy dig diy dis
_— = — —_— —_— = r _T - 1 h .
m SBo. + a and m Sry + i dt-almost everywhere (60)

For the impulsive part of the motion, we assume that the densities of diy (respectively di;) and diS (respectively dif) with

respect to a discrete measure dr{ (a sum of Dirac atoms Z 0t,) are equal and denoted by py (respectively p;), that is

K2

di¢  diy di¢  di,
Dy = d:f; = i}g, and p; = d?Z“Tf, = ?Zﬁ, drS-almost everywhere. (61)
The relation (60) and (61) are contained in
diy = dig — SPo.dt and di; = dif + Sr}dt. (62)

Doing so, we implicitly assume that the cohesion forces (—Sf0. and Sr;) are Lebesgue integrable functions and the corre-
sponding measure di — di“ does not contain Dirac atoms and is just represented by —S3¢ dt and St} dt. Since the evolution
of the cohesion variable (and hence the driving force) is governed by the displacements uy and u;, that are both assumed to be
absolutely continuous in time, we can expect to have the assumed regularity for 5 and the cohesion forces.

Additional impact laws. Since the contact and friction measures dpy and dp; may contain atoms, some further modelling
choices must be added to properly define p, and p;. For the normal part of a contact «, the Moreau impact law is chosen as

0<p3Lv§’++ev3’7>Oifu§<0, else py =0, (63)

where e € [0,1] is the Newton coefficient of restitution. If an impact occurs, p$ > 0 implies the Newton impact law v =

—evy’ ™. If not, the velocity is continuous and we have the constraints (1 + e)vgy > 0. Almost everywhere, we have for the
normal part

0<ri+ 5%, Luy >0, thatis0 <y L ug > 0. (64)
The Signorini condition (64) is implied by the following condition at the velocity level:
0<ry® Loy 2 0ifuy <0, elserg® =0, (65)

that we will keep for the formulation. The relations (63) and (65) are contained in the following measure complementarity
condition:

0<dig® Lodt +evd™ > 0ifud <0, else dif® = 0. (66)

For the tangential part p', we choose the Coulomb friction impact model of Frémond (Frémond, 2017) to ensure the energy
dissipation at impact when coupled with a Newton impact law (see Acary and Collins-Craft (2025) for details):

a L o -
=y € iy sgn(5 (vr T + ). (67)

Doing so, the power dissipated by the frictional impulse is always negative:

1
ST e <0, (68)

Almost everywhere, the Coulomb friction model is given by
=€ p(rd + B0c) sgn(vft) = pr® sgn(vy). (69)

The relations (67) and (69) are contained in the following measure relation:

1
—dip® € pdig® sgn(i(’uf"+ + o). (70)

Remark 6. Rigorously, almost everywhere with respect to dt, the relations (66) and (70) are

0<Sry® Lo¥ 2 0ifud <0, else Sry™ =0,

,ir c,a a (71)
—Sri" €= pSry® sgn(v).

As for the unilateral contact and Coulomb friction case, this relation involve cones and can be rescaled by S ending up with (65)
and (69).
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To keep the notation compact, the index set / = {«, uy < 0} is defined and the following notation dig = col(diy®, a € I),

dif = col(dif, o € I), vy = col(ve, v € I), Hy = row(Hy,qe, @ € I), Hy = row(H; qe, € I) is adopted. Thus, we can
write the equations of the system in a nonsmooth setting using differential measures as

Mdv+ Kudt = Fdt + H] dp, + H,' dp, — H] SBo.dt + H," Sr!dt,

U=v, uy=Hw+by, u=Hu+b, v=Hw, v =Hwv,

B=—\ A +o.uy+ oY |ur| + 0cden(B—1) =&, (72)
0<&ELB>20, 0KSALA >0, —rl=pocysgn(uy),

0<di§ Lof +evg >0, —di¢ € pdisgn(3(vf +v7)).

Remark 7. While it would appear that the index sets outlined above would exclude contact points on surfaces not formed by
fracture from consideration in our model, in fact such points can easily be included in the matrices Hy and H, by considering them
as cohesive zones where the value of 5 has been set to zero. We then recover the standard model of unilateral contact and friction.

4 Numerical time integration

Here we present the time-discretisation of the system that allows us to write a fully-discretised system suitable for numerical
integration. In particular, we demonstrate that we are able to write the discrete system as a linear complementarity problem, and
that the solution of this problem exists. We then finally demonstrate that the discrete energy balance is in general dissipative
and energy-preserving in the absence of contact and friction.

4.1 Principles of the time integration scheme

We choose a time-integration scheme that is based on the Moreau—Jean scheme adapted for the Frémond impact law for friction
(Acary and Collins-Craft, 2025), which is in turn based on the classical Moreau—Jean scheme (Acary and Brogliato, 2008; Jean,
1999; Jean and Moreau, 1992; Moreau, 1999), that is widely used in contact dynamics. We consider a time interval ¢ € [tg, tmax),
which is discretised by the sequence {to, 1, ..., tk, tk+1, ..., tmax - For the impulsive terms which appear in (72), the measure
of the time interval (k, k 4 1] is kept as a primary unknown:

Pugokr1 = dig((k k +1]) = /

di€ and py g py1 ~ di((k k +1]) = / di¢. (73)
(k,k+1]

(o Fo+1]
We approximate all of the Lebesque integrable terms using a #-method given by
tht1
/ x(t)dt =~ hzgig, (74)
tr

where we use the notation z19 = 0z + (1 — 0)zk41 with 8 € (0, 1] and h is the size of the time-step. For the cohesive
reaction force, we have

tht1
/ diN = / dZ; — SO’C/ 6dt ~ Dnk,k+1 — h/SO-CBk;JrQ, (75)
(k,k+1] (k,k+1] te
and
trt1
/ di, = / dig + S/ rydt & prg g1 + hST] k195 (76)
(k,k+1] (k,k+1] e ’

This yields for the first line of (72)
M (vgs1 — k) + hKupip = hFyyg — ho H, SBrye + hHTTri,Hg + H pygrs + H pogpr- (77)

The velocities and displacements are approximated by viy1 = v(tg4+1) and ug+1 =~ u(tg+1), and by application of the #-method
are linked by

Uk+1 = U + hvgyo. (78)

For the contact and friction part (the fifth line of (72)), we choose our contact detection distance @y, to simply be the relative
displacement at the previous time step i.e.

'aN,k = Un,k- (79)

Evidently, other discrete approximations of this distance are possible and are feasible implementations of the system, we simply
must choose one in order to have a condition that activates the contact and allows the normal and frictional percussion to
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be nonzero. In the following, we redefine the index set in discrete time Iy = {a, iy, < 0,vy; < 0} and the following

compact notation pykk+1 = Ol(PLx 41, @ € Ik), Prik+1 = OUpTy pp1, @ € Ii), Unpsr = col(vGpy 1, € Ii), Hy =
row(Hy e, € I};), Hy = row(Hyne, @ € Ij;). The local relative normal and tangential velocities and displacements are
obtained from the global velocities and displacements by applying the relevant selection matrices:

Vs o1 = Hyks1, Vr k1 = Hrvpia, (80)
and

Un k41 = HyUp41 + by kg1 and g g1 = Heggr + br g1 (81)
The (3 variable is integrated following the same principle

Br+1 = Br — hAiye, (82)

and the cohesive part of the model (third and fourth lines of (72)) are expressed with the k + 6 approximations:

A'kyo + 0ctn o + 0cy|Ur kro| + 0cOen(Brtro — 1) = Ekta,
0<&t0LBryo=20, 0< Ao L Aypg >0, (83)

_T;7k+9 = UC'VBkJrE’ Sgn(uT,k+9)~

The discretisation of the contact and friction are given by

0 < pykkt+1 L Onpg1 +evgr =0, (84)
—Prkk+1 € Py k,k+1 S8R (Vk40),

which can be expressed in terms of vy ¢ as
0 < Pukkr1 L Ovgpro + (0(1+€) = Dvgp =0, (85)
—Dr,k,k+1 € UPx K k+1 sgn(Vi40)-

Following the principles above, the time-stepping scheme for the full elasto-dynamic cohesive-frictional-contact problem is
written as follows:

M (vt — vg) + hKupyg = hFyrg — ho HY SBrye + hHTTr;)He + H pop 1 + H prgprn,
Upt1 = Ug + MUk,

Un k0 = Hytgro + by kro,  Urk+o = Hrtgig + br kv,

Un,k4+0 = HNUk+9, Ur,k+0 = HTUk+97

Brt1 = Br — hAro,

00en(Brro — 1) + Octin ko + 0 trkro] + Akr1 = Epyo, (86)
0< A% 19 L Akyo 20,

0< Br+o L &kvo 20,

—T ko = Br+00cy sgn(Urk+0),

0 < pyiktr L Ovggro+ (01 +e€)— vy =0,

—Drk k41 € Pk k+1 SEN(Vktg),

where 1 represents a vector of ones.

4.2 The discrete linear complementarity problem

We choose to formulate our model in the form of a Linear Complementarity Problem (LCP) (Cottle et al., 2009) defined for a
matrix L and a vector q as

{w =Lz+q, (87)

0wl z2>20,
and denoted by LCP(L, q). To obtain an LCP, the terms involving the sign functions need to be expressed as a complementarity

condition. To this end, we will use the cone reformulations developed in Lemma 2 and Lemma 3. Lemma 2 will be used for
friction. For tangential cohesion, we will use the reformulation of Lemma 3, which avoids the addition of spurious solutions.
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Lemma 3 requires the introduction of a regularisation variable 7, that very slightly increases the cohesion threshold. The
system

0< Bryo L &kvo 20,

_T;,k-i-e = (Uc7ﬁk+0 + nq) Sgn(UT,k+9)7

0 < pugkt1 L Ovypyo+ (0(1+€) —1ugr =0,
—Drk k41 € IPx,kk+1 SEN(Vk46),

is replaced by

Trkro = DT e

0< SBkyo L &rro >0,

0< 72;’]64_9 L Axpq1 + DTUT,IH—G =0,

0 < Xkto L (0c7SBrto +1g) — ﬂTﬂ,lﬁ@ 20,
p;,kJre = Dﬁ'l‘,k+9,

0 < pukkt1 Loggro+ (01 +e€)— Doy =0,
0 < Pt L Lhgo + D vrpyg 2 0,

0 < Crro L pppkrr — 1 Prpgrr = 0.

<
<

We introduced two new slack variables (x1¢ € IR;; and x1e € R, and the matrices D € R™*2™ and 1 € R?>™*™ defined
by

1 0 0]
10 0
1 =10 0 ... 0 0
0 1 0
0 0 1 -1 0 0
D= cand1 = |0 1 0 (90)
0 0 0 0 1 -1
00 ... 1
00 ... 1

We must also consider our expression for the slack variable {19 = A"k1g + 0c0en(Brtro — 1) + Octn ro + Tc|Ur kt0l-
Our expression for &4 features a dependence on an absolute value |uy ;+¢|. This does not pose any problems for the trailing
terms, but must be eliminated for the terms dependant on the entries of z in order to obtain an LCP. As shown in Lemma 3, we
have |ur g1+0| = Xk+o-

Now, in order to obtain a workable formulation to express as an LCP, we first consider the entries in the complementarity
variable vectors w and z that are given by:

hOXk10 SA'y1e
Ek+0 SPBr+o
Ovy kro +0(0(1 +€) — Doy Dak k+1
w = 10Ck19 + 0D T vr gvo v 2= | Drkkst | (91)
[Pk k41 — 1T Pkt 0Ck+0
UXkro + DT ur ko Pkt
0YSBrro — 1TF 41y Xk+6

where all of the cohesive zone variables should be understood as vectors. As in Collins-Craft et al. (2022), we take hf )\ ¢ as the
complementarity variable (rather than O\ ¢) in order to avoid an ill-conditioned matrix as A — 0. Some of the variables have
been rescaled by 6 > 0 to facilitate the proof of existence of solutions (see §4.3). We detail the algebraic manipulations required
to arrive at the LCP formulation in Appendix B.1, and present here only the final result. Once we arrive at the formulation of
the LCP, we add a small numerical regularisation term 7, to the main diagonal of the L matrix to facilitate the operation of the
pivot solver when the pivot values are very close to zero. In the most general case of multiple cohesive zones with boundary
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conditions enforced, the LCP(L, q) is defined by

QM xm
S*l
QXM
02m><m
Qmxm
02m><m

Ome

—g-1
0c(6enS™! = h20%0,.Uy)
—ho? oV
—h#%c.D TV,
077L><m
—h20%6,.D " Uy

O'C’}/Im xXm

Br
Oc (QuN - 5C,N1m)

9ﬁNM_1%k,k+1 +0(0(1 +e) — 1)Hyvy,

QDTHTM_1%k7k+1
Om
D" qu,
ng1™

Om xXm Om X2m
ho*c. V) h8*c. V] D
02 Wi 0° W D
’°D"Wy  6*°DTW..D

pmxm -17
oDV, n6’DTV.I D
om Xm om X2m

0m><7n 0m><2m 0m><m
0™ B20%0 . UuD oy I™™
omxm h92‘/;\ITD omxm

1 h92DTV D 02m><m

T )

0m><m, 0m><2m 0m><m
0> 120D UnD 1
gmxm —]lT gmxm

(92)

where 0°%° corresponds to a matrix of zeros with a rows and b columns, 7q is the numerical regularisation factor applied to g,
and the U, V and W matrices are defined in Appendix B.1.

4.3 Existence of the solution of the discrete LCP

We want to show that the system LCP(L, ¢) has at least one solution. As the system contains Coulomb friction, uniqueness
cannot be guaranteed for any value of the coefficient of friction.

Assumption 1. The time-step h is chosen small enough that 7.(3.,S™' — h?0%0.U,y) is positive definite.

Since 0.0, xS ~1 is a positive definite matrix, a time-step exists such that Assumption 1 holds.

Lemma 1. Under Assumption 1, L is copositive on the positive orthant.

1
Proof Let us recall that L is copositive on the positive orthant if 2 Lz > 0 forall z > 0. Since 2 Lz = iz—r (L+ LT)Z, we

first compute the symmetric part of L:

[ Qmxm Qmxm Qmxm 0m><2m Qmxm QX 2m Qmxm 1
QmXxm 0.0(6071\'5—1 _ h292O.CUNN) QmXxm 0m><2m QmXxm 0m><2m O.C,Ylmxm
. Qmxm gmxm 92WNN 02WN’1‘D %‘ulmxm h92‘/NTD Qgmxm
5 (L+LT> = |g2mxm 02mxm 92DTWTN 92DTWTTD 02mxm h92DTVTTD 2mxm
OTILXTVL OTTLXm %ul OTVLXQTVI 077L><’VVL OmXQ’m 077L><77L
02m><m 02m><m h92DT‘/NI h92DT VT—TFD 02m><m h292DT UTTD 02m><m
Qmxm Oc,_yIme omxm 0m><2m Qmxm 0m><2m Qmxm
(93)
By splitting the matrix, it is possible to obtain the following relation:
1
§ZT (L + LT) z :z; (ac(éc,NS_l — hZHQUCUNN)) 29
T
z3 WNN WNTD h‘/NTD z3
+ 6% | 24 D'"Win D'WyuD hD'ViyD | |z
26 hD'V,] mDTV.ID m2DTU.D| |z
+ 20727 2o + pz3 2. (94)
Under Assumption 1, the first term is nonnegative
e [Uc(6C’NS_1 — h29206UNN)] 29 20, (95)
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and
20,72 2z + piza 25 > 0 forall z > 0. (96)
For the remaining term in (94), let us rewrite the matrix as

T

Tr_ _
WNN WNT-D hVNT.D I 0m><2m Om><2m N HN I 0m><2m 0m><2m
DTWTN DTWTTD hDTVTrD == 0m><'m D 0m>< 2m EfT M71 HT 0m><m D 0'm><2'm
rD'V.I hD'V.ID h:DTU,D omxm  gmx2m D H, H, omxm  gmx2m [

(97)

The matrix on the left-hand side of (97) has the form AM ' AT . Since M ' isa positive definite symmetric matrix, this matrix
is also a positive semi-definite matrix, and we can conclude that

T
Z3 Wi WD hoVieD z3

62 |z, D™W.. D™W.D hDTV.D | |2z >0. (98)
%6 RDTVI mDTVID h2DTU.D| |z

Each component of the sum in (94) is nonnegative, and so L is copositive on the positive orthant. O

To prove the existence of solutions, we need to add an assumption on the surjectivity of H;.
Assumption 2. The matrix H; is surjective, i.e, Vb € R, 3Ja € R" such that b = H,a.
If the constraints are not redundant, i.e if the matrix has full row rank then Assumption 2 is satisfied.

Proposition 1. If Assumption 1 and 2 hold then the LCP(L, q) has a solution.

Proof Let us first compute the set of solutions of the homogeneous LCP(L, 0), also called the kernel of the LCP, given by

K(L)={2>0,Lz>0,2" Lz = 0}. (99)
Using (94) and (97), the relation 2" Lz = 0 with Assumption 1 is equivalent to

2o =0, HJZg =0, HTTDZ4 =0, H:Dzﬁ =0, (100)
for 6 > 0. The relations z > 0, Lz > 0 further implies

21 20,25 20, 27 > 0. (101)
The set of solutions of the homogeneous LCP(L, 0) is then given by

K(L)={z|2>0,20=0, H 23 =0, H' Dzy =0, 25 >0, H Dzg = 0, 27 > 0}. (102)
For z € K(L), we have

o _ T o T T
q 2 :B;zl + {GHNM_lik,k_H +60(0(1+e)— 1)Hva} 23 + [HDTHTM_lik,k_H} 24 + [DTquT} 26 + nqsz7,

~ a L ~ 1% T _ T
:5;21 + {QM_IZ;C,;CH +6(0(1+e)— 1)vk] HJZ;), + {OM 12;6’;%1} HTTDZ4 + [qUT] Dzg + 7’]q1TZ7.

(103)

From (100) we know that [, z3 = 0 and H,' Dz, = 0 which allows us to simplify (103) as

¢ 2= B2+ [qus] Do+ gl " 2. (104)
Using the expression of g,,,, we can further simplify to

q'z= 511—21 + [hﬁM‘lgk’kH + uk]THTTDzG + bIkJr@DzG = ;l,—k:+0DZ6 + nqsz7, (105)
since H,' Dzs = 0. Using Assumption 2, there exists an a such that bTTk+9 = Ha, then we get

q¢"z=a"H  Dzg+ B 21 + 01 20 = Bl 21 + 1,1 27 (106)
Asng > 0and z7 > 0, nq1T27 > 0 and 8, > 0, we can conclude

q'z>0forall z € K(L). (107)

Since L is a copositive matrix, the condition (107) implies that the LCP(L, ¢) has a solution by virtue of Theorem 3.8.6 in Cottle
et al. (2009). O
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4.4 Discrete energy balance

In this section, we will show that the time-stepping scheme described in (86) satisfies the discrete energy balance, even in the

case of impacts. We will start by considering the momentum balance given in (72), and multiplying by 3 (vF +v7)

(vt +v*)TMdv+ % (vt +v*)TKudt == (vt +v*)Tth+ % (vt +v*)THNT (di — So B dt)

N —

1

2
1 + T T r -C

+§(v +v7) H, (Srpdt+ dif). (108)

Asvtdt = v~ dt = vdt,and M and K are symmetric matrices, we are able to rewrite (108) as

-
1 1 1
d(ZvTMv> +d<2uTKu) =v! Fdt + [QHN (v* —1—1)_)} di§ — v] SocBdt

T
1
+ v, Srrdt + [QH (v + v)] dic. (109)
. . I . . . 1+ 1+ .
As the space-discretised kinetic and strain energies are given by K = 5 Mvand U = k Ku, we can write

1 1
dK+dU = 0T Fdt 4 2 (uf 7)) i€ — v SoBdt + v Srtdt + 5 (v + o) dic. (110)

We now specify the space-discretised version of the continuous fracture energy given in (45):
— T T r
dG = (v, 0.58 — v, Sry)dt, (111)
which lets us write the energy balance of the space-discretised system:

1

5 (vf +or) " dic. (112)

1
dK+dU +dG = oT Fdt 4 7 (uf +oy) ! S+

Let us define the total energy of the system as T = K + U + G, and integrate (112) over a time interval of (¢1,¢3]. We thus
obtain the incremental energy balance:

AT=T7" (t2) -1 (tl) = Wext + WimPaCt + Whiction; (113)

where the work done by the external forces, contact/impact and friction on the time interval (1, 2] is given by

ta
Wyt = / v Fdt, (114)
t1
1,4 AT e
Wimpact = 5 ('UN + vy ) dZN, (115)
(t1,t2]
1
Whiiction = / 5 ('U—:_ + 'UT_)T dl—f (116)
(t1,t2]

The contact law specified in (63) has been shown to dissipate energy i.e. Wimpact < 0 (Acary, 2016). The use of the Frémond
impact law for friction specified in (67) allows us to conclude that Wction < O (see (Acary and Collins-Craft, 2025) for details).
We can in turn conclude that

AT — Wext = Wimpact + Whiction < 0. (117)

The space-discretised incremental energy balance is thus either conservative or dissipative, that is to say that no spurious en-
ergy is added to the system.

We now show that the equivalent incremental energy balance is satisfied by the space-and-time-discretised scheme. Following
the method in Acary (2016), the variation of the sum of the kinetic and elastic energy over the time-step is given by

1
A1+ AUk = (5 =0) (Iowss = oulBe + s = )

T T T
+ hp o Fkt0 + Vg to Prekr1 — Mg 90 SBrvo

T T
+ MUy ST ko + Ur pyo Prokkt 15 (118)
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where || - ||3; and || - |% are the 2-norm and 2-seminorm induced by the matrices M and K respectively. Let us define the
discrete approximations of the increment of fracture energy, the increment of external work, the increment of contact work
and the increment of frictional work:

AGr 1 =h (vNTk+aacSﬂk+9 - ”TT,k+97’;,k+0) ~ / (vNTUCSﬂ — ijri) dt, (119)
T P T
Awext,k’k)J’,l = hvk+0Fk+9 ~ / v th, (120)
tr
A\)‘/impact,k,kJrl = 'U]IkJrepN,k,kJrla (121)
A\)‘/ﬁriction,l’c,kJrl = ’U-l—-l,—kJerT,k,kJrh (122)

1
where we have used the approximations given in (73). Now, provided 5 < 6 < 1, we have an estimate for the variation of the

energy given by
AKp g1 + AUp g1 + AGg kp1 — AWer ke k+1 < AWimpactk,k+1 + AWeriction, k, k+1- (123)

It has been shown (Acary, 2016) that our chosen discretisation of the impact law leads to

. 1
A\}‘/impac:t’k,k-i-l < 0if 0 < 1+ 6- (124)
Similarly, it has also been shown (Acary and Collins-Craft, 2025) that our chosen discretisation of the friction law gives
1 1
A\)‘/friction,k,kJrl g 0if 5 < 0 < 1 Te < 1. (125)
We are thus able to obtain the result
AKp g1 + AUp g1 + AGgk k1 — AWert ke k1 < AWimpact b, k+1 + AWrriction, b k+1 < 0. (126)
1 .
For 0 = 5> We can sharpen this to
AKpg g1 + AUp g1 + AGg k1 — AWer ki k+1 = AWimpact,k,k+1 + AWrriction, b k+1 < 0. (127)

We can compare this with the continuous-in-space-and-time discrete energy balance in (47), and see that the discretised scheme
does not spuriously add energy into the system, and is in fact dissipative. In the special case of no friction or impact, the
integration scheme is energy-preserving.

4.5 Quasi-static scheme

Often in laboratory tests displacements are applied that allow the rate of crack propagation to be confined to the quasi-static
regime, and as such it is useful to have a numerical scheme that is adapted to the case of slow crack growth over long periods of
time, with the caveat that such a scheme can only work if the material is stiff and the decohesion process releases a significant
amount of energy. Such a caveat is not unique to our model, as it is known that the combination of linear elasticity with a
linear cohesive zone model as we have presented here is not always well-posed in quasi-statics (Bouchitté et al., 1995; Rodella
et al., 2025). We once again use the §-method to discretise the system in time, and work with the contact and friction forces,
rather than percussions. D and 1 retain their meaning as before. In quasi-statics, we solve for normal relative displacement
directly, and so we have no need to perform a contact detection step or distinguish between H and H. Consequently there
is no distinction between the Delassus matrices U, V, W = HK ~!H (other than those due to the selection of tangential and
normal degrees of freedom), so we will denote all of them as U. The development of the equations for the quasi-static case is

20



detailed in Appendix B.2, and here we simply present the LCP( Ly, gstat) that we solve:

ROy 1o N )
Ek+0 SPBr+vo
Uy, k+6 ST k40
Wetat = |LhOCs0 + D hOvrjrg | 2t = | Ppig |
ST ko — 1 P jsg hOCk+o
Txreo + D urpro 1 k4o
0cYSBr+o — ]lTTA';kJre Xk+6
[ gmxm _g-1 QXM gmx2m  gmxm  gmx2m  gmxm |
st g, (567N571—00UNN) oUw o UgD 0™ o UgD oyl
X —0 U Unx UaD o™X UaD Q™™
Lot = |02 xm —0.D " Up D'Uyx D'U.D 1 D'U.D o*™*m|,
oM 0 xm ul qT XM gmxX2m gmxm
02mxm ~0.D " Uy D'Uy D'U,D 0*>™ D'U,D 1
o xm oI XM gmx2m  gmxm 1T o XM
Br

Oc (HNKile'—Q—G + bN,k+0 - 6C,N1m>
HK ' Fyig + by ko

Gstat = D H, K 'F,9 — DT Hyuy, - (128)
o
DTH K™ "' Fipg+ D brjoro
11"

We do not develop any proof of the existence of solutions to this LCP, although such a proof would follow straightforwardly
the proof of the dynamic scheme in §4.3 as the LCP has the same structure. However, the existence of solutions in this case

depends on the material parameters o, d., £ and v taking the appropriate values to ensure that o, (xS g Uy ) is

positive definite. As such, materials which are insufficiently stiff cannot be guaranteed to have a solution with this system, and
must be simulated with the dynamic LCP regardless of the rate of loading. We also note that even where the stiffness matrix
K has been modified appropriately to include Dirichlet boundary conditions, it will only be positive definite so long as all
elements remain connected. If any part of the system is able to translate as a rigid body (as may be the case when a crack runs
through a system from one side to the other), the matrix will no longer be invertible and the system cannot be solved. Once
again, in this case simulation with the dynamic LCP resolves the difficulty.

5 Numerical simulations

We implement our discrete system in Python 3.12.1, and resolve the LCP using Siconos 4.5.0 (Acary et al., 2024). The LCP
(92) can be solved reliably by Lemke’s algorithm (Lemke and Howson, Jr., 1964). Specifically, Lemke’s algorithm provides
a guarantee that if solutions of the LCP exist (as we have proved above), then the algorithm will find one. The nonsmooth
Newton approach would be the most promising for large-scale and parallelised simulations, but for this work where we want
to demonstrate the proof-of-concept, we prefer the greater accuracy and mathematical guarantees of Lemke’s algorithm.

As in Collins-Craft et al. (2022), in implementation we remove the entries corresponding to the cohesive zone when £ is less
than a certain threshold ccopesion, namely 1 x 1073, compared to X 1072 in Collins-Craft et al. (2022). This larger threshold is
chosen for numerical efficiency, as the tangential constraints are two-sided i.e. 7} ;. > 0 and ]le;, ka1 < 0cYSBry1, which
becomes difficult for the solver to satisfy at small values of 5 without the use of very small time-steps. While in principle
this can be addressed by the use of an enumerative solver, this becomes unworkable for systems of even moderate size, as the
scaling properties of enumerative solvers are extremely unfavourable. Hence, we favour the less elegant, but simpler, solution
of simply removing these lines from the problem when their resolution becomes overly onerous. We similarly remove those
entries corresponding to the contact problem when uy; > 0. The effect of both of these removal procedures is to make the
LCP smaller, and thus increase the speed of solution.
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5.1 Quasi-static scalar case with elastic springs

In the interests of demonstrating the benefits of working with the dynamic formulation in (92), we demonstrate a pathology
that can arise in quasi-static systems. We consider the case of an elastic spring bound to a rigid substrate at one end, but
otherwise free to move, in the spirit of Acary and Monerie (2006) and Chaboche et al. (2001).

7777777770
722772777

Figure 3: We model the elastic spring as two nodes connected by a linear elastic material. Node 1 is bound to the rigid substrate
and has a normal confining force applied to it while node 2 has a controlled displacement or force applied to it. We add two
springs, one in the vertical direction and one running diagonally, and forbid any displacements at the far end.

We are obliged to add a vertical spring to the system, as in the quasi-static case an absence of stiffness in the normal di-
rection causes the system to be insensitive to the applied confining force and changes in the elasticity of the spring. We add a
diagonal spring to complete the structure and avoid pathological singularities in the stiffness matrix.

We give the system the material parameters G. = 0.25 N/mm, 0. = 0.5 MPa, v = 1, 4 = 0.5, a surface area S = 1 mm?,
a vertical and horizontal spring length of 1 mm, with a corresponding length of v/2 mm for the diagonal spring. We set the
regularisation parameter 7, = 1 X 107® and the time-stepping parameter § = 1. We apply a driving displacement of u = 0.5¢
to the far end of the horizontal spring, apply a confining force of F' = —5 N in the vertical direction at the cohesive zone node,
and then vary the stiffness of the bars in the system.

5.1.1 The soft spring system

First, setting the bar stiffness to F = 0.45 MPa, simulating for 18 ms with 360 time steps (h = 0.05 ms), we have the behaviour
shown in Figure 4.
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Figure 4: The system with £/ = 0.45 MPa. (a) The nodal displacements u; and ug as a function of time ¢. (b) The cohesion
B as a function of time ¢. (c) The cohesion 3 as a function of crack sliding displacement u,, normalised by the critical sliding
distance .. (d) The tangential cohesive for r; as a function of time ¢. (e) The tangential frictional force 7\ as a function of
time ¢. (f) The sum of the cohesive and frictional tangential forces " + 7" as a function of time t.

We observe behaviour from our system consistent with it being ill-posed. The tangential displacement of the node to which
the cohesive zone is attached jumps rapidly, and the sum of the tangential cohesive and frictional forces likewise experiences
a sudden jump. Of particular note, the system decoheres entirely in one time-step, and the graph of the cohesion against the
normalised crack sliding displacement demonstrates dramatic “overshoot” (that is to say, if the system behaved correctly,
would be zero when u,/d.r = 1, but in this system (3 goes to zero when u;/d.r = 1.6694). As a consequence, an amount of
energy substantially more than G, will be released by the decohesion process, and thus the numerical results are no longer
coherent with the analytical model.

5.1.2 The stiff spring system

By contrast to the system in §5.1.1, if we instead set the bar stiffness to £ = 4.5 MPa and simulate the system for 6 ms with
120 time steps, we observe the behaviour shown in Figure 5.
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Figure 5: The system with £ = 4.5 MPa. (a) The nodal displacements u; and ug as a function of time ¢. (b) The cohesion 3 as a
function of time ¢. (c) The cohesion [ as a function of crack sliding displacement w., normalised by the critical sliding distance
Sc (d) The tangential cohesive for 7! as a function of time ¢. (e) The tangential frictional force 7" as a function of time ¢. (f)
The sum of the cohesive and frictional tangential forces 7% + 71" as a function of time .

In this case, we observe behaviour from our system consistent with it being well-posed. All of the variables evolve in a
continuous manner, and no “overshoot” is observed with respect to the amount of energy released by the model. So long as
SenS ™ — 0. Uy is positive definite (a quality that relies on material properties in the quasi-static case), the matrix L remains
copositive, and the system only finds the physical solution.

5.2 Dynamic scalar case with elastic springs

Now, we illustrate the benefits of working in dynamics when resolving the system described in Figure 3. We assign a mass of
0.25 g to each node, keep all other parameters bar the stiffness constant, and now resolve the LCP given in (92).

5.2.1 The soft spring system

We once again set the spring stiffness to 0.45 MPa, which lead to manifestly ill-posed behaviour in §5.1.1, illustrated in Figure 4.
Now, when treating the system dynamically, we observe the behaviour illustrated in Figure 6.
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Figure 6: The system with £ = 0.45 MPa. (a) The nodal displacements u; and u3 as a function of time ¢. (b) The cohesion (5 as a
function of time ¢. (c) The cohesion [ as a function of crack sliding displacement w., normalised by the critical sliding distance
d¢r. (d) The reversible part of the tangential force 7 as a function of time ¢. (e) The frictional percussion p, as a function of
time ¢. (f) The sum of the frictional percussion p; and tangential cohesive impulse Ar]. as a function of time ¢.

In this case, despite using material parameters that lead to ill-posed behaviours in quasi-statics, the addition of mass to
the system and a change to dynamics was sufficient to achieve seemingly well-posed behaviour (using the same time-step
h = 0.05 ms as in the quasi-static case, although the system remains well-behaved for larger time-steps). Finally, we note that
the particular value of p; will depend on the size of the time-step h since it is an impulse, with bigger time-steps leading to
bigger values of p;, but the dynamic equilibrium equation will always be respected.

5.2.2 The stiff spring system

Now, we simulate the stiffer system as in §5.1.2 with E' = 4.5 MPa, but this time providing a driving force F' = 0.375 exp(0.2t)
sin(7t/2) N to the far end of the horizontal spring, and use h = 0.025 ms to ensure correct resolution of the elasto-dynamics.
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Figure 7: The system with £ = 4.5 MPa. (a) The nodal displacements u; and ug as a function of time ¢. (b) The cohesion 3 as a
function of time ¢. (c) The cohesion [ as a function of crack sliding displacement w., normalised by the critical sliding distance
d¢r. (d) The reversible part of the tangential force 7} as a function of time ¢. (e) The frictional percussion p, as a function of
time ¢. (f) The sum of the frictional percussion p; and the tangential cohesive impulse hr} as a function of time ¢.

In Figure 7 we observe that the system decoheres for both positive and negative values of w,, with the characteristic hori-
zontal unload-reload behaviour of nonsmooth cohesive zone models, meaning that we have preserved one of the key features
of the model presented in Collins-Craft et al. (2022).

5.3 The edge-cracked block

In order to demonstrate the capabilities of the model in a more realistic context, we use the finite element method to spatially
discretise a given problem. We generate a mesh of linear triangular elements (T3 elements) using Gmsh 4.11.1 (Geuzaine and
Remacle, 2009, 2022). Then, we exploit the Python 3 interface of the Akantu 5.0.7-post1 (Richart et al., 2024a) finite element
software (Richart et al., 2024b) to read in the mesh and generate the relevant finite element matrices such as the structural
stiffness matrix and the consistent mass matrix, after having specified an appropriate material law for the bulk. For output
visualisation reasons, we also separately read in the mesh via Meshio 5.3.5 (Schlomer, 2024). We describe the detailed algorith-
mic implementation of the finite element system in Appendix C.

As a particular example, we treat the edge-cracked block where a 100 mm long by 40 mm high block has a crack pre-cut
along the centre line, starting from the left-hand side and extending to a depth of 50 mm. Equal and opposite tractions are
applied on the top and bottom surfaces of the block. This geometry (or very similar ones) is a classic benchmark in numerical
crack modelling (see for instance Armero and Linder (2009), Bleyer et al. (2017), Nguyen (2014), Park et al. (2012), Rabczuk and
Belytschko (2004), and Song et al. (2008)). The geometry of the problem is illustrated in Figure 8.
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Figure 8: The edge-cracked block geometry, with tractions applied to the top and bottom surfaces. The crack will propagate
rightwards from the pre-existing crack tip, and at a certain point begin to bifurcate.

While the idealised pre-cut crack geometry is infinitely sharp, in practice specifying this choice causes Gmsh to make the
body continuous across the crack. We thus set the lower and upper crack lips to make contact with the left-hand side of the
geometry at 19.999 mm and 20.001 mm respectively, which is sufficiently sharp for our purposes. We further treat the block as
having a depth of 1 mm, and consequently of being in the plane stress condition. In meshing the block, we instruct Gmsh to
produce a mesh with a characteristic length of (at most) 0.5 mm along the centre line from the initial crack tip, as well as at the
top right and bottom right corners. The characteristic length at the left-hand side of the block is 5 mm. The combined effect of
these instructions is to produce a mesh that is coarser on the left-hand (pre-cracked) side, with a more densely meshed zone
that “fans out” from the centre line towards the corners. The mesh is displayed in Figure 9.

Figure 9: The mesh generated by Gmsh which we use for the simulation. The visualisation is conducted in ParaView 5.11.2
(Ahrens et al., 2005; ParaView 2023).

We use the parameters detailed in Table 1, which are generally representative of a brittle polymer such as poly(methyl
methacrylate) (PMMA) or Homalite-100, which are classical model materials in experimental fracture mechanics, particularly
for this geometry (Ramulu and Kobayashi, 1985).
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Mechanical Parameters

Young’s modulus £ 32 x 103 MPa
Poisson’s ratio v 0.2

Density p 0.00245 g/mm
Critical traction o, 12 MPa
Critical fracture energy G, 0.003 N/mm
Critical traction ratio y 1

Newton’s coefficient of restitution e 0

Coulomb friction coefficient p 0/04

Time step parameters

f-method parameter 0.5

Maximum time step before cracking h .« 1x 1074 ms
Maximum time step after cracking fcrack 1x107° ms
Adaptive time-stepping parameters

Minimum time step threshold ¢y, 1x1074

Division factor for unsuccessful resolution cgiyide 2

Multiplication factor for successful resolution cruliply 1.2

Number of successful resolutions to trigger multiplication ngyecess D

Numerical parameters

Matrix regularisation factor 7y, 1x107%

Vector regularisation factor 7, 1x1078

Cohesion threshold cconesion 0.001

Insertion threshold ciyreshold 1

Excess decohesion threshold A\ireshold 0.1

LCP solver SICONOS_LCP_LEMKE

LCP tolerance 1x10712

Maximum number of LCP iterations 1x10°

LCP tolerance multiplication factor crcp 1

Table 1: Values of the simulation parameters. Of these parameters, the mechanical parameters, 0, hcrack, 771, ¢ and a choice
of the LCP solver are inherent to our method and so must be specified. Specifying cconesion is substantially required in practice
as despite our proof of solution in the general discrete setting, the concrete implementation in floating point arithmetic can
occasionally pose difficulties for the feasibility of the problem. Setting a value of Cyyreshold gives our method power to simulate
the rigid branch of the cohesive law, if we so choose. The other parameter values are merely details of implementation, and it is
perfectly possible to use the method without adaptive time-stepping and accepting the default parameter values of the chosen
LCP solver.

The mechanical parameters are set to be identical to those in Nguyen (2014) (where those parameters exist in our model).
The parameter e exists in our model but not that used by Nguyen, and so we set e = 0, as this is known to be the value most
suitable for finite element simulations (non-zero values will cause the elements to “jiggle” continuously in this case). Nguyen’s
system is frictionless, so we conduct one simulation with ;¢ = 0. We are interested in demonstrating that our system can suc-
cessfully resolve a frictional system, so we also conduct one simulation with p¢ = 0.4, taking the value as being representative of
the results for PMMA in Bouissou et al. (1998). We choose 6 = 0.5 to have the best possible energy conservation properties, and
hamax = 1 X 1074 ms to balance detecting the crack initiation accurately in time with numerical efficiency. A¢rack = 1 X 107° ms
is set to obtain very fine local resolution of the elasto-dynamics near the crack tip, although our method allows substantially
larger crack steps while still satisfying the proof of the existence of solutions. Our minimum time step threshold ¢, division
factor cgjyide, multiplication factor cuuiiply and successful resolution number ngyecess are chosen to balance an accurate resolution
of the system at numerically challenging points (particularly when the system first bifurcates) with a reasonable time of sim-
ulation (noting that the system simulation time is very sensitive to ¢y, in particular). The regularisation factors 1y, and 1), are
chosen to be as small as possible to minimise the deviation from the LCP obtained via algebraic manipulation in Appendix B.1.
The cohesion threshold ccohesion 1S chosen to be small enough that for typical rates of decohesion and typical time step sizes in
the simulation, the point would decohere in the next time step, while also being large enough that the solver does not have
difficulty in respecting the double-sided constraint. The insertion threshold cCinreshold is set to 1 for numerical reasons, as a
smaller value entails inserting more cohesive zones, which increases the time required to solve the LCP at each time step. The
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excess decohesion threshold hAthreshold 18 set to allow a reasonable amount of decohesion to occur per time step (for larger time
steps), while still ensuring that the decohesion process is finely resolved in time. The STCONOS_LCP_LEMKE solver is cho-
sen due to the advantageous theoretical property of Lemke’s algorithm (Lemke and Howson, Jr., 1964), namely the guarantee
of finding a solution if one exists. This choice of algorithm also renders the values of LCP tolerance and tolerance multipli-
cation factors moot, but they can be used for the other feasible algorithm choices (SICONOS_LCP_NEWTON_FB_FBLSA
and STCONOS_LCP_AVI_CAOFERRIS), so we still pass the listed values as dummy arguments to the simulation. In the
case of the Lemke algorithm, the maximum iteration number only functions as a threshold to indicate an unsuccessful solve
and does not affect the accuracy, but for the other algorithms it can determine the accuracy of the solution.

We set Oqpplieca = 1.5 MPa, applied as a step load (that is, the system is not allowed to first find the corresponding static
equilibrium, but starts with all v = 0 and v = 0). We simulate the system for 0.06 ms, and write to .pvtu and .vtk files every
1 x 107° ms. The end states of both the frictionless and frictional systems are shown in Figure 10.
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Figure 10: The state of the system at the end of the simulation, with each mesh shown using a 1x warp factor (that is, the mesh
in the image is displaced to match the displacements it possesses in the simulation). (a) The frictionless system, with the mesh
coloured by total displacement and the points coloured by value of cohesion. (b) The frictional system, with the mesh coloured
by total displacement and the points coloured by value of cohesion.

We see in Figure 10 that in both cases the system bifurcates into two separate cracks, traceable by following the path of
zero cohesion points in dark purple. The fact of this bifurcation is reasonably significant, as previous studies have shown an
apparent inability for extrinsic cohesive zone models to support a crack bifurcation (Falk et al., 2001). Given the subsequent
success of several authors using extrinsic cohesive zone models (Nguyen, 2014; Park et al., 2012; Rabczuk and Belytschko,
2004; Song et al., 2008) in demonstrating crack bifurcation with exactly the geometry and loading conditions detailed above,
we infer that while intrinsic cohesive zone models may demonstrate crack bifurcation on coarser meshes, extrinsic models will
demonstrate crack bifurcation provided the mesh is adequately refined. We also note several pertinent features of the crack
pattern, in particular that one of the branches of the initial bifurcation eventually terminates. This initial bifurcation occurs at
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about 0.028 ms into the simulation, matching the moment of bifurcation obtained by Nguyen (2014). Numerically, this point in
time is also associated with very small time steps as the system resolves the spatial instability. It is also soon after this point that
in spite of the symmetric mesh, the simulation becomes slightly asymmetric due to numerical error. Similar deviations from
symmetry are observed in symmetric test specimens (such as those shown in Eid et al. (2023)), which highlights the sensitivity
of global crack trajectories to very small perturbations in both models and the real world. This points to the well-known issue
of mesh-sensitivity of the simulation, as the crack path is constrained to run along the edges of the elements. This issue can be
alleviated somewhat by setting each side to have a different value of o, using a modified Weibull distribution to enforce larger
elements as being weaker (Zhou and Molinari, 2004). While for the sake of simplicity we have used a constant o, our method
straightforwardly allows for this strategy by treating all of the o, and J. y terms in (92) as vectors. However, for a solution
that more closely approaches the ideal of mesh-independence, we must turn to more spatially sophisticated approaches such as
the virtual element method (Marfia et al., 2022; Nguyen-Thanh et al., 2018), discontinuous Galerkin approaches (Nguyen, 2014;
Versino et al.,, 2015), the extended finite element method (Moés and Belytschko, 2002) or pinwheel-based meshes (Papoulia
et al.,, 2006). While we do not anticipate any particular difficulties in combining our approach with these frameworks, any such
implementation remains beyond the scope of this article. Finally, we also observe that the frictional system is less prone to
further crack branching, presumably as the additional apparent strength induced by the frictional resistance makes triggering
the crack insertion condition less likely.
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Figure 11: The energetic quantities of the frictionless and frictional edge-cracked block systems. (a) The total energy, and
cumulated impact, friction and external work in the frictionless system. (b) The net difference of the work input with the
stored and dissipated energies over the time step in the frictionless system. (c) The total energy, and cumulated impact, friction
and external work in the frictional system. (d) The net difference of the work input with the stored and dissipated energies

over the time step in the frictional system.

In Figure 11, we calculate the total energy as given in §4.4 and cumulate the work terms in the standard way to obtain
subfigures (a) and (c). We obtain the change in the energy balance over the time step by moving all terms to the right hand side
of the equality in (127) and evaluating to obtain subfigures (b) and (d). In observing these systems, we see that the numerical
scheme accurately accounts for the energetic input without introducing any numerical dissipation, hence the size of the net
change in energy at each step is on the order of the floating point error. Further, at no point is the scheme anything other
than energy-preserving (in the absence of impact and friction), or dissipative (in the presence of impact and friction), meaning
that the practical results in implementation correspond exactly with the theoretical proofs obtained in §4.4. We note also that
the frictionless system dissipates more energy than the frictional system, despite having fewer dissipative mechanisms. This
occurs as the greater apparent strength of the frictional system causes fewer crack surfaces to be created, as it is the normal
impact on these surfaces that is the main means of dissipation. In the frictional system, we can see that the frictional sliding
does very little energy dissipation, with the normal impact being the main dissipative mechanism. These results highlight that
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even in geometries and loading conditions that favour mode I cracking without sliding, inclusion of the friction is important
to accurately model the dissipation, and doing so is more conservative for design purposes, as on net less energy is dissipated.

6 Conclusions

In this paper, we used the principal of virtual power to establish the equilibrium and boundary conditions for a body featuring
a cohesive zone. We then postulated a free energy potential for the surface that allowed us to obtain nonsmooth state laws
for the system. These state laws describe a family of extrinsic cohesive zone models that do not feature the unload-reload
elasticity characteristic of those models that have the shifted intrinsic model structure. This mathematical feature guarantees
appropriate physical behaviour under complex, nonmonotonic loading conditions, where traditional extrinsic cohesive zone
models exhibit the same spurious behaviours as intrinsic models. We then specified a nonsmooth dissipative pseudo-potential
that allowed us to obtain a complete generalised family of constitutive models for the cohesive zone system for both normal and
tangential crack opening, and showed that in the case of frictional contact the model is dissipative (otherwise, it is irreversible
but nondissipative). By specifying a particular energetic potential, we obtained a model that gives a linear evolution of the
cohesion variable with increasing displacement jump across the crack faces.

We then spatially discretised our system and re-framed certain parts using differential measures. This allowed us to include
the nonsmooth contact dynamics formulation within our model. By using a #-method to discretise the system in time, in com-
bination with the Frémond impact law for friction, we obtained a time-stepping scheme that we were able to write as a linear
complementarity problem. We then showed that given a sufficiently small time-step, the solution of the problem is guaranteed
to exist. The time-stepping scheme was then shown to be dissipative in the case of contact and friction, and energy-preserving
in their absence.

We then implemented the model numerically by solving the linear complementarity problem at each time-step, followed by a
global updating of the degrees of freedom not involved in the monolithic complementarity problem. By using the finite element
method, we were able to simulate a system of interest drawn from the literature, and show that our numerical method is able to
replicate the crack bifurcation behaviour that is observed experimentally and using other numerical methods. Empirically, the
method demonstrates excellent energetic conservation properties and is able to balance accuracy of solution with numerical
efficiency.

This work has demonstrated that the applications of techniques from convex analysis lead to physically correct and numeri-
cally efficient models that can encompass fracture, contact and friction. In formulating this work, we decided to remain in the
quasi-two-dimensional and small displacement framework so that we could continue to benefit from the linear complemen-
tarity formulation. The natural extension of the work is to pass to a fully three-dimensional model, however this will require
formulating the problem as a second-order cone complementarity problem, and is a substantial leap in complexity. Other
possible directions of research would be to explore other (nonlinear) forms of the cohesion law, extend the model to model
interface phenomena such as “rate-and-state” friction, or combine crack propagation with other physical phenomena such as
phase change.
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A Reformulation of a bi-dimensional Coulomb-like inclusion into a comple-
mentarity problem

Inspired by Stewart and Trinkle (1996), we give the results concerning the reformulation of Coulomb-like friction problem into
complementarity relations.
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Lemma 2. The solution yy, Yr, Ty, Tr of the following inclusion

{0 Syv Loy 20, (129)
—Yr € yysgn(z;) = Y|4,
is contained in the solution of the following complementarity system
O<yvLlazy20,
0< g LIX+DTz, >0, (130)
0SS ALy =175 >0,
with y, = Dy, and D = [1, —1]. Furthermore, we have yy|z:| = yyA.
Proof Let us consider the cases associated with
0<4 LIN+DTz, >0,
{ng\J_yN—]lT:l}T>0. (151)
1. A = 0. In that case, the complementarity condition implies
Tr = 0,951 + Ur,2 < Yns (132)
and then A\ = |x;|. Since §r1 > 0, gr 2 > 0, we also have
{yT =011 — U2 = U1 + Gr2 — 2002 < Tt + G2 < Uns (133)
~Yr = Gr2 — Y01 = Gr2 + 001 — 2001 < Pr1 + Ir2 < Uy
and we conclude |y;| < Y.
2. A>0,9r,1 > 0,9r,2 = 0. In that case, the complementarity condition implies
A=—2r > 0,2 < 0,91 = Yy, (134)
and then y; = yy, 2 < 0, A = |a4].
3. A>0,9:1 = 0,92 > 0. In that case, the complementarity condition implies
A=z >0,2: > 0,912 = Uy, (135)
and then y; = yy, 2 > 0, A = |24].
4. A > 0,791 > 0,92 > 0. In that case, the complementarity condition implies
A=0. (136)
This case is not possible.
5. A>0,9r,1 = 0,92 = 0. In that case, the complementarity condition implies
I=0,A= —z, A > x;. (137)
and then y A\ = yy|ay|. O

As mentioned in §4.2, the last item of the proof may lead to the addition of unwanted solutions. To remedy this, we propose
adding a regularisation variable to the system that will very slightly increase the threshold of the sign function and eliminate
artificial solutions.

Lemma 3. Let e > 0. The solution yy, yr, Ty, T of the following inclusion

0 g Yn 1 Ty 2 03
(138)
—yr € (yx+ €) sgn(zr) = (yv + €)9|z4],
is given by solving the following complementarity system
O0<yyLay =0,
0< ¢ LIN+DTz, >0, (139)
0< AL (yy+e)lT9, >0,

with y, = D, and D = [1, —1|. Furthermore, we have |x,| = \.
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Proof Let us consider the cases associated with

0 LIAN+D 2, >0
{O;ix ISR o
. A = 0. In that case, the complementarity condition implies
T =0,0r1 + Jr2 <Yy T 6 (141)
and then \ = |x|. Since §r1 > 0, gr 2 > 0, we also have
{yT =Ur1 — Y2 = Yr1 + U2 — 2002 < P10 + G2 <+ 6 (142)
~Yr = Gr2 — P01 = Gr2 + 0010 — 2001 < P10 + Jr2 S U+ 6
and we conclude |y;| < yy + €
2. A>0,9r,1 > 0,9r,2 = 0. In that case, the complementarity condition implies
A=—x:>0,2: < 0,911 = yx + ¢ (143)
and then y; = yy + €, & < 0, A = |z
3. A> 0,91 = 0,9r,2 > 0. In that case, the complementarity condition implies
A=2:>0,2: > 0,yr2 =Y+ € (144)
and then y, = yy + €, &y > 0, A = ||
4. A > 0,91 > 0,9r,2 > 0. In that case, the complementarity condition implies
A=0. (145)
This case is not possible.
5. A>0,9r1 = 0,72 = 0. In that case, the complementarity condition implies
Yy = —€. (146)
This case is not possible. U

B Linear complementarity problem development

Here, we detail the manipulations necessary to arrive at the LCPs detailed in this paper.

B.1 Dynamic linear complementarity problem development

First, we need to express each components of the vector w in terms of the components of the vector z using the time-
discretisation (86). Having chosen the LCP variables in this way, the expression for wy is trivial:

wi =S (SB — SBryo) = =S 20 + B (147)

Likewise, the expression for wr:

wr = 0722 — 17 2, (148)
and for ws:
wy = pzz — 17 24. (149)

To continue to express the components of w, we will use the following relations
Vgt — Vi = 9(vk+1 — Uk) and ug9 = ug + hOvE4g. (150)

We start the development of the expressions for the more involved terms by expanding the first line of (86) multiplied by 6.
We arrive at

M (Vg9 — vg) + hOK (up, + hOvgrg) =h0Fy 19 — ho H] SBrie + OH, pyr ki1
+ OH, Dpr 1 + hOH, D7t k40 (151)
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We denote the augmented mass matrix as M = M + h%0?K and the free impulse (without the contribution of the cohesive
zone model) i 11 = Mvy — hOKui, + h0F, 9. When necessary, we modify the augmented mass matrix M and the free
impulse ¢ to take into account Dirichlet boundary conditions. Thus, the velocities vy can be determined by

Vppo = M~ (gk,kﬂ — h0o H SBy+e + OH pyp 1 + OH, Dprjrn + h9HTTD7ﬁ¥,k+0) : (152)

In terms of the LCP variables, we obtain
=M1 (i T 7T 7T T
Vkro = M (WH W0 H 2o + OH 25 + 0H D2y + hOH, Dz6) : (153)
We obtain the normal relative velocities by applying H, to (153):

Un,k+6 = Hva+97
= —hGO'CE[NM_lHJZQ + QﬁNM_lf;[JZ;g + QHNM_lﬁ:DZ4 + h&HNM_lHTTDzG + _H-NM_l/zk;’kJrl,
= —h00Vizo + OWinzs + Wi Dzy + hOVie Dzg + H M Yig i1, (154)

and the tangential relative velocities by applying H. to (153):

Urk+6 = HTvk+95
= —hbo H, M H] 25 + 0H, M YH] 23+ 0H,M " H, D2y + h0H M YH Dzg + H M Vig poy1,
= —hB0Vinza + 0Wiyzg + 0Wi D2y + hOVie Dzg 4+ H .M ™ ig oy 1, (155)

where Wy = H M “H! and W, = H, M 1A are the Delassus matrices for the degrees of freedom involved in the purely
normal and purely tangential contact problems, while Wy, = H M~ 1H T and W =HM™ 1H T are the Delassus matrices
for the interaction terms between the normal and tangential parts of the contact problem. The matrices Viy = HM~ AR U
Ve, = H, M~ 1HT Ve = Hy M~ 1HT and Vi, = H, M- 1H—r capture the effect of the cohesive terms on the contact and
friction degrees of freedom. From (154) and (155) we can stralghtforwardly get first ws:
w3 = Oug o +0(0(1 +e) — 1)vgg,
= 7h920—c‘/1'\m22 + HQWNNZ.?) + GQWNTDZZL + h92V1'\lTDZG + GHNMilgk,k+l + 0(0(1 + 6) - 1)Hvaa (156)

and then wy:

wy = 10C10 + 0D " vy g1,
= —h6?0.D " Vinzy + 62D Wiyzg + 02D " WDz + 125 + h6?D " Vi Dzg + 0D T H, M Vig oy 1. (157)

In the same way as for the velocity, we can expand the expressions for the normal and tangential relative displacements. Firstly
in the normal direction:

Un k+60 = HNukJrB + bN,kJrGa
= Hy (u, + hOvi1g) + by k+o,

—h20%c H M H] 2y + hO* H,M Y H] 23 + h0* H,M " H, Dzy + W20 HM ' H,' D26 + qu,,
= —h?0%0. U2z + 0V 23 + h0>V] D2y + h20?°U Dz + Gy, (158)

and then in the tangential direction:

U k0 = Hitiggg + by ggo,
= H, (up, + hOvj19) + brgvo,
= —h*0%0 H, M~ H] zo + h0* H. M~ H] 23 + h6* H, M~ H, Dz, + h*0*H.M~*H, D25 + qu,,
= —h20%0.Unzo + hO*V] 25 + h0*V,] Dzy + h?0?UrDzg + Gu,, (159)

where for compactness we have introduced the terms ¢, and ¢, given by

Guy = ROHM Vi ki1 + Hywi + bygero, (160)
Qur = thTM_lik,]H,l + Hyup + bT7k+9, (161)
and where Uy, = H,M “H! and U, = H, M ~1H. are the complete Delassus matrices for the normal and tangential degrees

of freedom, while Uy, = HNM 71HTT and Uy, = HTM 71HJ are the Delassus matrices for the interaction terms between the
two.
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Equation (159) leads directly to one for wyg:

we =LXpt0 + D s o
= — h20%6,D " Upzo + h0?D V! 23+ h0*D " V,] D2y + h20° D" Uy D26 + 127 + D' qu,. (162)

Finally, we consider our expression for the slack variable ;19 = A"j19 + 0clen(Brto — 1) + Octin kto + TcY|Ur k10| Where
1 represents a vector of ones, using the expressions of uy xt¢ and u, j¢ for all cohesive points. As detailed in §4.2, we make
the choice to replace |ty ;4| With xj1¢ in order to obtain an LCP, at the cost of introducing non-uniqueness into the system
at u; = 0. Having made this choice, we obtain an expression for ws:

Wy = 0c0en(Brto — 1)) + 0cvXkt0 + A ko + Octin kto
= UC(SC,N(S7122 — 1))+ oz + S 2 4 o0 | —h2020 Unzo + h92VNIZ3 + hGQVTIDzél + h202Uy Dz + Gun

=851 + Uc(5c7N571 — hQQQO'CUNN)Zz + hGQO'C‘/NIZ?, + ]’LGQUCVFIDZzl + h?0%0.UuDzg + OcY27 + OcQuy — Tclenl
(163)

At this point we have obtained the complete set of expressions necessary to construct the LCP. We then add a regularisation
term 77, along all the main diagonal entries of the L matrix, as well as another regularisation term 7, to the last entry of the ¢
vector, which together have the effect of facilitating the operation of the pivot solver and suppressing the non-physical solution
at u; = 0, and giving us the LCP as presented in (92).

B.2 Quasi-static linear complementarity problem development

As noted above, in the quasi-static system we will not make any distinction between H and H, and hence all the matrices will
be U. The global elastic-cohesive-frictional-contact problem is thus:

Kupyo = Fyg — 0cHJ SBrro+ HY Srsy g+ H DRf o+ HT DL,

Sr;,k+9 = Dﬁ,k+97

ST'Tr,kJre = Dﬂr,mea

Uk+1 = Up + hugg,

Un,kto = HyUryo + bykto,  Urkto = Hilgro + brryo,  Vrktro = Hiviyo,

Brt1 = Br — hAro,

00en(Brro — 1) + Octin ko + 0 |Urkrol + Akre = Epvo,

TN k+o = Tnk+0 T 0cBito, (164)
0< SA %t L Agyo =0,

0< SBrto L &yo =0,

Sr§7k‘+9 L Uy k+o 2 0,

f'irr,k—i-e L 1¢t9 + DT vy jig =0,
Chao L STy — LT >0,
P orro L Txrgo + DTy o =0
Xkt L SBryooey — 177, 5> 0.

o o o o o
INCINCINCININ TN

We establish our complementarity vectors w and z as

hOAk10 SAk1e
Ek+o SBr+6
Uy, k+6 Srﬁ,kw
Wetat = |LhOC,r9 + D hOvrpro| »  Zstat = f;ik+g ) (165)
ST g — LT 4 hOCk1o
Txrte + DTUT,kJra f';,k_i'_e
oS Brro — 1T, 1y Xk+0

where we consider h0Ay g, h0v ;9 and h8(,1¢ to avoid an ill-conditioned matrix as h — 0. We can begin rearranging our
equations to form the LCP proper. Once again, we obtain trivially w; = S~ (S8, — SBitg) = =S Lzo+ i, ws = pzs—1" 24
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and wy = 0.Y22 — ]sz(;. Then, assuming a modification of K and F’ to take into account the boundary conditions, we have
Kugyo = Fryo — 0cHY SBevo + HY Sty + H DY yig+ H D7y g,
K (up, + hOvi19) = Fipo — 0cH SBrro + H Sr$y 1+ H! DYy g+ HI DRy g,
hOvj g = K1 (—UCHNT SBto + HY Sr&ppo+ H DAY o+ HI Dty o+ FM) — U (166)

Now, applying the tangential selection matrix H; to hfvy_g we obtain

hOvy o = — 0 H K H SByro + HiK ' H Sr$ ) o+ HK"H DAY+ HLKVH DFY g
+ H:K ™" Fyyo — Hyup,
= — 0 UnSBrso + UnSripig + UnDRY g + U DYy g + Hi K ™' Fipg — Hyug,
= — 0.Unzo + Unzz + U D2y + Uy Dzg + Hi K Fiopg — Hyuy,. (167)

This directly gives us wy:
wy = —0eD U2y + D" Upzs + D" Uy Dzy + 125 + DU Dzg + D" H K ' Fj g — D' Hyuy,. (168)
Now, the normal relative displacement is given by

Un, k+60 = HNukJrB + bN,kJrGa
= Hhbvy g + Hyup + by i+,
=HK! (—UCHJ55k+9 + HJSTE,I@+9 + HT—eriTik+9 + H:Df;k_,'_g + Fk+g> — Hup, + Hyuy, + by k10,
= _O—CUNNSB]C+9 + UNNSTS,kJre + UNTD,FK]@+G + Ume;7k+0 + HNK_le+0 + bN,k+0;
= 7O-CUNNZ2 + UNNZ3 + UNTDZ4 + UNTDZé + HNKile—i-G + bN,k+97 (169)
which gives us w3 directly. Similarly, the tangential relative displacement is given by
Ur 0 = Hilgyo + br 10,
= HThe'UlH»G + Hyuy, + bT,kJrGa
— H K (—JCHNT SBrvo+ HY Sy g+ HI DPy o+ H Dit, o + Fk+9) — Hyuy, + Hyug, + Do joyo,
= _UCUTNSBIC+6 + UTNST;]CJFQ + U'ITD/F'i[‘r,ijre + UTTDf;,k:Jre + HTK_leJre + bTJﬂr@a
= —0.Un22 + U2z + UnDzy + U D2 + H K ' Fi g + by gvo. (170)
From, this we easily obtain wg:
we = Ixgso + D s pyo,
= 0D UnSBhio + D UnSTs g + D UnDiy g + D U Diy g + AXiyo + DT H K Fipg + D bo iy,
= —0.D" Uz + D" "Unz3 + D" UpDzg + D U D2g + 127 + DT H.K ' Fip g+ D" by g ro. (171)

Finally, we require an expression for {;9. We make the same replacement (Jur k10| — Xk-+o¢) as in the dynamic case, and
obtain

Ehro =ATjt0 + 00en(Brro — 1) + Tcin o6 + TV X165
=S S A g+ 00enST S Bryo + o (—aCUNNSﬁk+9 + UaST$psg + Ua DR g 4 U DPL g + HWK ™ Flopg + by e
+ 0YXk4+0 — Oclend,

=S"'21 4+ 0, (5C,NS_1 - UCUNN) 29 + 0.Uwzs + 0.Un D24 + 0. Uy Dzg + 0cy27 + 0 (HNK_le+e + byt — 5C,N1) :
(172)

which gives us wq directly. With all of the equations specified, we can write the LCP presented in (128).

C Finite element implementation details

After having read in the finite element mesh and generated the appropriate structural stiffness matrix K and consistent mass
matrix M, we set an initial time step size that is chosen for efficiency and does not necessarily resolve the very fast dynamics
of the system (that is to say that elastic waves can travel over more than one element per time step). We then solve the system
without any cohesive zones inserted by obtaining the velocities by (152) (using SciPy’s sparse matrix library (Virtanen et al.,
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2020) to solve the linear system with an LU decomposition) and then updating the velocities and displacements at the end of
the time step following the principles of the §-method. The nodal variables v, u, F' and the derived quantities at the Gauss
points (¢ and o) are written into a .ptvu file.

At the end of each time step, Akantu checks whether a cohesive zone needs to be inserted between two elements. This is
done by calculating the stress at each Gauss point, obtaining the interpolation functions on the basis of the “Gauss element”
formed by the Gauss points, and performing an extrapolation to the quadrature points (Felippa, 2004; Hinton and Campbell,
1974). It should be noted that for this purpose Akantu always uses at least two interpolation points along the edge of the
element, even for linear triangular elements. In this work, we use this type of element, and so the stress is calculated at a single
Gauss point and should be constant within the element and identical at the two quadrature points lying on the interface (at
+1/+/3 in the internal isoparametric coordinate running along the interface). Nevertheless, the method described is generic,
and can work straightforwardly with higher order elements such as the quadratic triangle (T6).

Once the stresses are obtained at the quadrature points, we calculate the traction 7 at each point using the stress value calcu-
lated from each element and the normal at the quadrature point (that is to say in our case of two elements with two quadrature
points, we calculate four sets of tractions). For each set of tractions we calculate the normal traction 7; = o - n - n, the com-
pressive component of the normal traction Tcomp = | max(0, —7;)| (so for a tensile stress, this value will be zero), and from this
the frictional resistance is calculated by Tiction = £47comp- Then, the tangential traction 7, = o - m - ¢ is calculated and if
-y (7—1 - Cthresholda) if Tcomp — 07 or
|Tul > . (173)
M Tcomp =+ CthresholdOcY if Tcomp >0,

is true, the quadrature point indicates that it fulfils the cohesive zone insertion criterion. The parameter Cipreshold € [0, 1] is @
numerical parameter that controls at what fraction of the critical traction a cohesive zone should be inserted.

Remark 8. Conventionally in extrinsic cohesive zone implementations, this parameter exists only implicitly as it must be equal to
one. While we also set the value of the parameter to 1 for reasons of numerical efficiency, in principle our method is perfectly able
10 set Cipreshold < 1 as our formulation is able to simulate the rigid branch of the cohesive law, which other implementations are not

capable of.

If all of the quadrature points indicate that they fulfil the cohesive zone insertion criterion a cohesive zone is inserted along
the element interface, and one or more of the corresponding nodes are duplicated.

Remark 9. Our choice to use a condition that all the quadrature points on the interface must fulfil the insertion criterion separately
using the stresses from both elements is merely an implementation detail, and other choices are possible. For instance, we could also
use a criterion that if any of the quadrature points fulfil the insertion criterion using the stresses from either element then a cohesive
zone should be inserted, or we could first calculate the average stress using both elements, and then calculate the corresponding
tractions to check the insertion condition against (which is the most common approach). Our model and methodology is perfectly
coherent with any of these approaches, and once again the choice is made for reasons of numerical efficiency.

At this point, the code indicates that it is passing to the crack simulation stage. Akantu duplicates the nodes and rebuilds
the K and M matrices, taking this duplication into account, but remaining in the total Lagrangian finite element framework
(that is, the matrices are calculated with respect to the nodes’ initial positions, not their current positions). A new maximum
time step size hcrack 1S chosen, where we select one that is sufficiently small to fully resolve the very fast elastodynamics of the
system. For practical purposes, this is smaller than what is required to fulfil Assumption 1, although we nevertheless check this
condition each time we build the corresponding matrices. Then, we reconstruct M reimposing our boundary conditions, as
well as the selection and interpolation matrices required for the cohesive zone model. In constructing the H and H matrices,
we allow the user to choose whether to diverge very slightly from the otherwise linear finite element framework, and calculate
the normal and tangential vectors based on the current positions of the corresponding nodes at the instant of creation, rather
than their original positions. This acts as a small regularisation of the model and enables much larger time steps to be used at
points at which a crack bifurcates. Then, the LCP matrix L is calculated.

At this point, the program enters a new time-stepping loop and at each step, the LCP vector ¢ is calculated. The vectors
Wyarm and Zywarm Which contain the values of the appropriate variables from the previous time step are created to give the LCP
a “warm start” to aid convergence. Then, the cohesive zones are characterised to determine whether they are intact and/or in
contact. For those zones that are no longer intact, their entries corresponding to the first, second, sixth and seventh lines of
(91) are removed from consideration, while for those cohesive zones that are not in contact, their entries corresponding to the
third, fourth and fifth lines of (91) are removed from consideration. Then, w and z are created by selecting from wyarm and
Zwarm Only those entries that are still under consideration, and a corresponding reduced L and q are created. This operation
is performed with the intention of obtaining the smallest possible LCP to solve, which aids numerical performance. Then, the
reduced LCP is solved with Siconos.

Depending on the solution of the LCP, three paths are possible. In the first path, the LCP is successfully solved (that is to
say, Siconos does not indicate that the LCP solution algorithm failed to converge). We then check a condition on the size of
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hAk41, ensuring that it is less than some value hAwmreshold to ensure that the system does not decohere too rapidly. Providing
that this condition is fulfilled, the solution is post-processed to obtain the values of the state variables at step k + 1, which are
then stored and written to file as appropriate. Then, the cohesive zone insertion condition is checked once again at the end
of the step. The time is advanced, and in the event that a new cohesive zone needs to be inserted, the steps to reconstruct the
appropriate matrices are repeated. In both the case of no new cohesive zones or new cohesive zones being inserted, the system
is solved once again as described above. In the event that the current time step is smaller than Ak, and the system has been
successfully solved a certain number of times in succession (with the exact number ngyccess to be specified by the user), the
time step size is multiplied by a user-specified factor cyuiiply at the end of the solution step (unless the resultant & would be
greater than A, in which case it is set to that value), and at the start of the next time step, the corresponding matrices are
reconstructed using the new time step size, and using the updated node positions in the case of the H and H matrices (if that
option is selected by the user).

In the second path, the LCP indicates a successful solution, but the condition on the size of hA;1 fails. In this case, we do not
conduct any post-processing, write any variables or advance the time. We instead divide the time step by a user-determined
factor cgivide, and reconstruct the appropriate matrices and attempt the solution again. In the event that the time step size falls
below a user-specified threshold ¢y X Rerack, rather than further dividing the time step, it is instead reset to heack and the
matrices are once again reconstructed and a new solution is attempted.

In the third path, the LCP indicates an unsuccessful solution, namely that Siconos could not converge. In this case, we follow
the same procedure as for the second path, performing no post-processing or system updating, adapting the time step, recon-
structing the relevant matrices and attempting the solution again.

The solution procedure continues until the maximum simulation time has been reached, at which point the code terminates.
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