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Key points

• A new model accounts for the coevolution of the grain size distribution and porosity in crushable granular media
subject to shearing.

• Linear stability analysis and the finite element method are used to study the localisation width of the model at
depth.

• Orders-of-magnitude decrease in permeability is predicted to occur inside the fault core, but permeability can
increase outside it.

Abstract

During an earthquake, slip occurs in a localised shear zone that features a heavily granulated fault core that can be
characterised as a shear band. We study the formation of this fault core in a granular rock such as sandstone by
developing a model of crushable granular media within the framework of Breakage Mechanics. This model accounts
for the evolution of the grain size distribution, while also accounting for the co-evolution of the solid fraction. An
enrichment with the Cosserat continuum allows for the model to predict finite-width shear bands. The model is
then calibrated against experimental data taken from tests on Bentheim sandstone, and a parametric study of the
mechanical parameters is conducted using linear stability analysis. We find that for deeply-buried rocks the shear
bands have a compactive component, and the initial value of the solid fraction does not play a strong role in the
initial band thickness, but can influence the rate of delocalisation of the band. Post-localisation behaviour is studied
with the finite element method, which shows the formation of zones of dilation outside the band in addition to the
compaction within the band. Using a modified Kozeny–Carman permeability law, it is shown that within the band
the permeability reduces by several orders of magnitude, but can increase outside the band. Our results highlight the
importance of modelling grain size and solid fraction evolution as they exert a controlling influence on hydromechanical
properties that play an important role in fault formation and seismic slip.

Plain language summary

During an earthquake, all of the sliding motion is accommodated in a very narrow zone. Within this zone, the material
has much finer grains than in the surrounding rock. To understand how this arises we develop a new model that tracks
how the grains become finer, as well as how the porosity of the material reduces. The model can predict how wide
the narrow zone of fine material is. We show that during the sliding process, strain localises in a narrow compacting
shear band where significant grain crushing is accompanied by porosity reduction whereas porosity increase occurs
outside the band. These changes in porosity and grain size strongly impact the permeability of the medium, reducing
it by orders of magnitude in the compacting slip zone. This process is very important as materials through which it
is difficult for fluids to flow are known to be more prone to earthquakes.
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1 Introduction

Failure due to localisation into a shear band is particularly important in soils and rocks, as this failure mode is what
governs the formation of a (potentially seismogenic) fault (Barras and Brantut, 2025). While the faulting process can
occur in completely dry soils and rocks in both the field (Aydin and Johnson, 1978, 1983) and laboratory (Ord et al.,
1991), shear band formation can also be influenced by changes to pore fluid pressure, flash melting and phase changes
(Rice, 2006; Veveakis et al., 2010; Brantut et al., 2011; Brantut and Sulem, 2012; Veveakis et al., 2013; Platt et al.,
2014; Rice et al., 2014; Platt et al., 2015). These processes are known to co-evolve as the fault forms and matures,
with the structural consequence of the localisation of deformation into a thin band, that is typically referred to as the
principal slip zone (PSZ) of the fault. The PSZ accommodates the majority of slip in a fault (Chester and Chester,
1998; Sibson, 2003; Wibberley and Shimamoto, 2003; Sulem, 2007), and the intensity of the multiphysical processes
governing the fault behaviour is controlled by the thickness of the PSZ (Brantut et al., 2011; Veveakis et al., 2013;
Platt et al., 2015; Sulem and Stefanou, 2016), meaning that an accurate prediction of the evolution of this thickness
is essential to accurately model fault behaviour.

Within the PSZ, the grain size distribution (GSD) features a considerably higher proportion of fine grains than
the surrounding host rocks and generally follows a power-law scaling in mature faults (Sammis et al., 1986, 1987;
Sammis and Biegel, 1989; An and Sammis, 1994). The role of this microstructural property and its evolution in
fault formation and behaviour has to this point been comparatively minimally studied. Aside from any effect that
changes to the GSD can have on the mechanical behaviour in and of itself, any change to the GSD will also change
the coupled multiphysical phenomena within the fault. As the GSD changes due to comminution, the surface area of
the solid material will increase, which will in turn increase the rate of any chemical interactions that occur between
the solid and the pore fluid (Stefanou and Sulem, 2014; Buscarnera and Das, 2016; Zhang and Buscarnera, 2018;
Viswanath and Das, 2019; Chen et al., 2023; Chen and Einav, 2024). The evolution of the solid skeleton towards
a more efficient packing will reduce the available space for the pore fluid to occupy. Simultaneously, the movement
from larger to smaller pores defined by much smaller and more tightly packed grains leads to the tortuosity of the
system also increasing, and as a consequence the permeability decreasing (Manzocchi et al., 1998; Haines et al., 2016).
The process of shearing, and the associated frictional sliding and grain breakage will also increase the temperature,
further increasing the pore pressure (Rattez, 2017; Rattez et al., 2018a,b,c; Stathas and Stefanou, 2023) and possibly
modifying the rate of any chemical reactions. All of these phenomena are tightly coupled, serving to change the
effective stress experienced by the solid skeleton, which will in turn change the mechanical state by facilitating further
shear deformation. This deformation leads to further changes in the GSD. This highlights the importance of being
able to accurately model the evolution of the grains in the solid skeleton in order to fully capture the multiphysical
behaviours that influence fault formation.

Even in cases of shallow burial depth and slow deformation (meaning thermal and chemical effects do not play any
significant role), cataclastic shear band formation with significant grain breakage and porosity change is observed in
the field (Aydin and Johnson, 1978, 1983; Cashman and Cashman, 2000; Fossen et al., 2007; Exner and Tschegg, 2012;
Lommatzsch et al., 2015; Pizzati et al., 2020). These bands can also be observed in laboratory experiments performed
in a wide variety of apparatuses (Bésuelle et al., 2000; Chambon et al., 2002; Desrues and Viggiani, 2004; Sulem and
Ouffroukh, 2006), including in tests that are conducted without any pore fluid (Rattez et al., 2022). We may conclude
that shear band formation is a pervasive feature of deforming granular rocks and soils, regardless of the presence of
multiphysical couplings. This fact was demonstrated theoretically in the classic paper of Rudnicki and Rice (1975) by
studying the bifurcation behaviour of a general class of constitutive models appropriate for frictional materials such as
soil and rocks. It has further been shown that in the classical continuum with rate-independent plasticity the favoured
localisation mode is a band of infinitely small thickness (Stefanou and Alevizos, 2016). In numerical simulations such
as those performed with the finite element method (FEM) this will result in a band of one element width, regardless
of the mesh refinement.

The ultimate reason for this infinitely thin localisation is the absence of an internal length scale in the material
model (Mühlhaus, 1986; Mühlhaus and Vardoulakis, 1987), a problem solved by specifying a model that does have
such a length scale. This can be achieved by working with a model that includes viscosity, as this quantity in-
troduces a dimension of length (de Borst and Duretz, 2020). However, recent results have demonstrated that for
rate-dependent regularisation, strain localisation onto a plane remains theoretically possible and has been observed
numerically (Stathas and Stefanou, 2022). In particular, whether the localisation onto a plane occurs in a given sim-
ulation is determined by the length of time simulated relative to the characteristic time introduced by the viscosity.
We would prefer that the ability of a model to regularise localisation not be dependent on arbitrary simulation choices
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such as the cut-off time, but instead on the underlying physics of the system. Hence, while viscous systems may
better reflect the observed rate-dependence of real materials, viscosity appears inadequate to reliably regularise the
localisation of the system. Another possible method of regularisation is to include additional physics such as thermal,
hydrological and chemical interactions. In this case, the internal length scale is linked to diffusion processes (see Rice
(2006), Brantut et al. (2017), Jacquey et al. (2021) and Heimisson et al. (2022)), particularly the outwards diffusion
of pore pressure and temperature from the shear band into the bulk, as well as possibly the movement of chemical
species. However, Gerolymatou et al. (2024) have recently shown that for mechanical systems coupled with physics
described by an advection-diffusion equation (namely pore fluid diffusion, thermal diffusion and chemical species dif-
fusion, as well as mechanical quantities such as the “granular entropy” (Jiang and Liu, 2009)), the presence of these
processes is not necessarily sufficient to guarantee regularisation. In particular, if the diffusivity depends on the strain
(as permeability can), regularisation will not occur. If the advection-diffusion source term depends on the strain rate
(as temperature or granular entropy do), regularisation depends on the system parameters which may change as the
system evolves, making a priori conclusions impossible. For some physical processes (e.g. shear heating induced by
friction), the parameter values will necessarily be those that do not regularise the system. As such, we can infer that
multiphysical couplings are not able to a priori regularise mechanical systems. Further, localisation in dry granular
materials at room temperature is widely observed experimentally (see for instance Charalampidou et al. (2011) and
Karatza et al. (2018)), meaning that a purely mechanical model without multiphysical couplings is required to explain
these observations, although there remains considerable interest in including hydrological, thermal and chemical effects
in general models of faults (Rattez et al., 2018a,c) to obtain a more refined description of their behaviour. The third
approach to regularisation is via a continuum with microstructure such as a nonlocal continuum (Pijaudier-Cabot and
Bažant, 1988; Poh and Sun, 2017; Wang and Poh, 2018), the second gradient continuum (Zervos et al., 2001) or the
Cosserat continuum (Cosserat and Cosserat, 1909; Mühlhaus and Vardoulakis, 1987), where the length scale is an
inherent property of the system, and in geomechanics is typically related to the mean grain size of the material. As
we are not aware of any theoretical or numerical demonstrations that such continua fail to regularise the system under
the relevant loadings, and in light of the fact that the other regularisation approaches have been demonstrated to fail
to do so (at least in certain circumstances), we conclude that the microstructured continuum approach is currently
the best choice to produce a model that will regularise the system.

In granular material modelling, microstructured continuum models are most often developed in the Cosserat con-
tinuum, as there is a direct physical interpretation of the additional kinematic variable (rigid body micro-rotations)
which closely resembles the observed behaviour of grains inside shear bands (Andò et al., 2012; Pinzon et al., 2025).
The use of the Cosserat continuum has been further bolstered by micro-mechanical arguments in favour of a non-
symmetric stress tensor (Bardet and Vardoulakis, 2001; Papanicolopulos and Veveakis, 2011), a characteristic feature
of the continuum. Typically the internal length scale of the continuum is assumed to be a constant and unchanging
multiple of the mean grain size d50 (Vardoulakis and Papanastasiou, 1988; Papanastasiou and Vardoulakis, 1989,
1992). However, examination of shear bands in crushable granular media, in either field (e.g. Rotevatn et al. (2008)
and Torabi (2014)) or laboratory (e.g. Chambon et al. (2002) and El Bied et al. (2002)) samples demonstrates the
presence of a very wide range of grain sizes that evolve under loading, meaning that this assumption is not physically
realistic, and a theory describing this grain size evolution is required. This wide range of grain sizes, varying over
orders of magnitude, also prevents the usage of discrete element method techniques (Papachristos et al., 2023) to
study the problem of particle breakage, as the computational cost of handling the extremely large number of fine
particles, the extremely small time step required, and the potential contacts between particles of massively varying
size is currently unreasonable. As such, a continuum mechanics theory that is capable of modelling grain breakage
would seem to be the best currently available technique to address this problem.

Breakage Mechanics (Einav, 2007a,b) is such a theory, and provides a thermodynamically consistent family of models
that describe the evolution of the GSD in terms of an experimentally accessible internal variable B. The theory
has been deployed in the development of a wide range of models, from simple models analogous to fracture mech-
anics theories (Einav, 2007c,d) to more complex models including damage (Das et al., 2014; Tengattini et al., 2014,
2022a,b), porosity (Tengattini et al., 2016) or both (Rossi et al., 2024). The model family has also been extended
to the hydrodynamic framework (Alaei et al., 2022), made rate-dependent (Zhang and Buscarnera, 2017; Ray and
Buscarnera, 2021, 2025), embedded in a non-local continuum (Nguyen and Einav, 2010), and used to successfully
model compaction band formation (Das et al., 2011, 2013).

In a previous work (Collins-Craft et al., 2020), we combined Breakage Mechanics with the Cosserat continuum,
to develop a model describing shear bands in crushable granular media. This model features an evolving internal
length scale that takes into account the entire GSD, thus rectifying the problem of an unrealistic fixed grain size
that was otherwise a feature of Cosserat continuum models in geomechanics. In this paper we further refine this
approach by augmenting the capacity to represent volumetric effects that occur due to comminution-driven pore col-
lapse, dilatancy during shearing and density-dependent elasticity. In addition, we add a cohesion to the model that
makes it much more suitable to modelling granular rocks by enabling an accurate description of the strength at low
confining stresses. The description allows us to capture dilation without particle breakage in the case of low confining
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stresses, while also ensuring that under higher confining stresses the model demonstrates pore collapse accompanied
by grain breakage. The inclusion of the capacity to dilate also allows us to refine the shear behaviour of the model
relative to the previous one, by including a shear strength that varies with the density, as well as the Lode angle. The
new model is able to recover the elastic behaviour of the model by Collins-Craft et al. (2020) as a limiting case, as
well as one of the end-members of the possible plastic behaviours. Of particular importance in the context of fault
mechanics, the internal variable that allows us to capture dilation also gives us sufficient information to calculate the
permeability of the system, a quantity that was not accessible in the previous model, which in turn allows us to show
the extent of induced permeability changes due to grain crushing, pore collapse and also dilation at the formation of
a shear band. While we leave consideration of the thermal, chemical and hydraulic interactions with this mechanical
model to future work, we emphasise that the model here presented is capable of predicting fault formation in realistic
geological conditions and is suitable for coupling with pore fluid flow, temperature changes and chemical dissolution
and precipitation, in order to a develop a comprehensive model of fault behaviour.

2 Cosserat Breakage Mechanics formalism

This section discusses the set of state variables that are needed for characterising the state of a system in the Cosserat
Breakage Mechanics framework, suitable for rocks and soils with distinct and crushable grains such as sands and
sandstones. The section also introduces the energetic conjugates to the kinematic variables, as well as the equilibrium
and boundary conditions that must be respected. All of the state variables and their dependent quantities depend on
the spatial position and time, but for the sake of notational simplicity we will not write this dependence explicitly.

2.1 Breakage state variable

In order to express the evolution of the GSD under loading, we make use of the breakage state variable B, which is
defined by the ratio of the area between the current GSD, and the initial GSD to the area between the ultimate and
initial cumulative GSDs. The concept is illustrated in Figure 1.
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Figure 1: The ratio of two grading areas is used to define the internal breakage variable B, as per Einav (2007b) and
Buscarnera and Einav (2012). F̂0(w), F̂u(w) and F̂ (w) = (1 − B)F̂0(w) + BF̂u are the initial, ultimate and current
cumulative GSDs respectively for a given grain size w. dmin and dMax are the minimum and maximum grain sizes
present in the GSDs.

The maximum grain size dMax remains constant between the initial and ultimate distributions, and dmin is the
smallest grain size in the distribution. We take this to be the smallest grain that it is possible to obtain due to
comminution, typically understood to be on the order of one micrometre (Kendall, 1978).

We use the universal initial distribution from Buscarnera and Einav (2012), by selecting a Heaviside step function
about dMax to express the cumulative initial distribution. The corresponding probability density function of the initial
distribution is given by

p̂0(w) = δ(w − dMax), (1)

where δ represents the Dirac delta function and w a given grain size. We assume that the ultimate GSD follows a
power law for its probability density function given by

p̂u(w) =
(3 − α)

dMax
3−α − d3−α

min

w2−α, (2)

where α is a dimensionless constant with typical values of 2.5 − 2.7.
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The probability density function for the current GSD is a linear function of B, that expresses the current GSD
in relation to the initial and ultimate GSDs:

p̂(w,B) = p̂0(w)(1 −B) + p̂u(w)B. (3)

B has a corresponding thermodynamic conjugate, the breakage energy EB , per Einav (2007b,c).

Within the Cosserat Breakage Mechanics framework, we obtain three non-dimensional grading constants, θγ , θκ
and θI , which express “how far apart” the initial and ultimate GSDs are, given by (Collins-Craft et al., 2020)

θγ = 1 − 3 − α

5 − α

(
1 − (dmin/dMax)5−α

1 − (dmin/dMax)3−α

)
, (4)

θκ = 1 − 3 − α

7 − α

(
1 − (dmin/dMax)7−α

1 − (dmin/dMax)3−α

)
, (5)

θI = 1 − 3 − α

8 − α

(
1 − (dmin/dMax)8−α

1 − (dmin/dMax)3−α

)
. (6)

The θγ term controls the energy stored due to elastic straining, the θκ term controls the energy stored to elastic
curvatures, and the θI term controls the angular micro-rotational inertia balance. The details of the derivation of
these terms are contained in Collins-Craft et al. (2020). Physically, the higher exponents in the equations of θκ and
θI results in their value being increasingly controlled by the largest grain size present in the GSD. We also note that
if the initial GSD is known, it is possible to either calculate a non-zero initial value of B, or to calculate the values of
θγ , θκ and θI using the second, fourth and fifth moments of the full distribution.

Finally, it is useful to calculate the harmonic mean grain size of the ultimate GSD (Nguyen and Einav, 2009)

dHu =

3 − α

2 − α

(
dMax

2−α − dmin
2−α

dMax
3−α − dmin

3−α

)−1

, (7)

as well as the current harmonic mean grain size as it evolves with B:

dH =
[
(1 −B)dH0 + BdHu

]−1
, (8)

where dH0 is the harmonic mean of the initial GSD, which is simply given by

dH0 = dMax. (9)

2.2 Strain and curvature rates

The following derivation adopts the small elastic strain assumption, which is appropriate for the elastic deformation
range considered. This does not prevent the total deformation from being arbitrarily large, but assumes that plastic
straining constantly relaxes the total straining, keeping the elastic part small (Stathas and Stefanou, 2023). We use
index notation and follow the Einstein summation convention. Indices appearing after a comma represent a differen-
tiation with respect to the spatial variable i.e. ai,j = ∂ai

∂xj
. The overdot represents a derivative with respect to time

i.e. ȧi = ∂ai

∂t , with two overdots representing the second derivative.

We define the infinitesimal (nonsymmetric) strain rate tensor by

γ̇ij = u̇i,j + ϵijkω̇
c
k, (10)

and the infinitesimal (nonsymmetric) curvature rate tensor by

κ̇ij = ω̇c
i,j , (11)

where u̇i and ω̇c
i are respectively the rates of translation and rotation along and about the xi axes and ϵijk is the

Levi–Civita symbol. These tensors may be decomposed into symmetric and anti-symmetric parts, with the symmetric
part of the strain rate tensor being the Cauchy strain rate ε̇ij . We define compression to be positive.

Both strain and curvature rate tensors can be split into trace and deviatoric parts:

γ̇ij =
1

3
ε̇kkδij + ėij , (12)

κ̇ij =
1

3
κ̇kkδij + żij , (13)
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where δij is the Kronecker δ, ε̇kk = ε̇v and κ̇kk = κ̇v.

The strain and curvature rates can be decomposed into elastic (recoverable) and plastic (nonrecoverable) parts within
the framework of rate-independent plasticity:

γ̇ij = γ̇e
ij + γ̇p

ij , (14)

κ̇ij = κ̇e
ij + κ̇p

ij . (15)

The elastic and plastic parts may also be decomposed into their respective trace and volumetric parts.

2.3 Solid fraction state variable

We adopt the solid fraction ϕ as a state variable, defined by

ϕ =
ρ

ρs
, (16)

where ρ is the bulk density of the material and ρs is the solid density. We choose the symbol ϕ for this quantity to
align with the usage in the physics community. We also define the relative solid fraction χ (Rubin and Einav, 2011).
This variable describes the solid fraction in terms of its position relative to the minimum and maximum values that
are possible for a given GSD.

χ =
ϕ− ϕmin

ϕMax − ϕmin
, (17)

where ϕmin and ϕMax are respectively the minimum and maximum solid fractions for a given value of B. We adopt
the expressions of Cil et al. (2020):

ϕmin = 1 − αlower(1 −B)lϕ exp(−lϕB), (18)

ϕMax = 1 − αupper(1 −B)uϕ exp(−uϕB), (19)

where αlower and αupper are terms constraining the lower and upper limiting solid densities for unbroken material and
lϕ and uϕ are solid fraction bounds that can be measured experimentally.

2.4 Stresses and couple-stresses

We denote the (nonsymmetric) stress tensor as τij , and the couple-stress tensor µij , which are conjugate in power
with the strain and curvature rates, respectively.

Both of these tensors can also be decomposed into trace and deviatoric parts:

τij =
1

3
τkkδij + sij , (20)

µij =
1

3
µkkδij + mij , (21)

where 1
3τkk = 1

3τijδij gives the mean stress p. The symmetric part of the stress tensor coincides with the Cauchy
stress tensor σij .

In addition to the mean stress p we have the deviatoric stress invariant q, and its corresponding deviatoric plastic strain
rate invariant γ̇p. We use the formulation given in Mühlhaus and Vardoulakis (1987), Vardoulakis and Sulem (1995)
and Rattez et al. (2018b) with the appropriate modifications for Breakage mechanics (Collins-Craft et al., 2020):

γ̇p =
√
g⋆1 ė

p
ij ė

p
ij + g⋆2 ė

p
ij ė

p
ji + ℓe2(g⋆3 ż

p
ij ż

p
ij + g⋆4 ż

p
ij ż

p
ji), (22)

q =

√
h⋆
1sijsij + h⋆

2sijsji +
1

ℓe2
(h⋆

3mijmij + h⋆
4mijmji), (23)

where g∗i and h∗
i are weighting factors, the values of which are given in Table 1.

2D model 3D model
Static model g∗i = {1/2, 1/6, 1/3, 0} g∗i = {8/15, 2/15, 8/15, 2/15}

h∗
i = {9/4,−3/4, 3, 0} h∗

i = {2,−1/2, 2,−1/2}
Kinematic model g∗i = {1,−1/3, 4/3, 0} g∗i = {8/9,−2/9, 8/9,−2/9}

h∗
i = {9/8, 3/8, 3/4, 0} h∗

i = {6/5, 3/10, 6/5, 3/10}

Table 1: Values of the coefficients for stress and plastic strain rate invariants in a Cosserat continuum depending on
choice of dimension and static or kinematic model.
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The expression ℓe is the energetic length scale defined in Collins-Craft et al. (2020) and given by

ℓe = dMax

√
1 − θκB. (24)

The Cosserat material length is no longer a constant as in Mühlhaus and Vardoulakis (1987), but depends on the
entire GSD through the grading constant θκ and evolves as the distribution evolves with B.

2.5 Equilibrium and boundary conditions

We consider a three-dimensional body V, with a boundary ∂V and a moment of micro-rotational inertia Iij . We denote
the part of the boundary with Dirichlet boundary conditions as ∂VD, with prescribed velocities ¯̇ui and rotation rates
¯̇ωc
i , while the part of the boundary with Neumann boundary conditions is denoted as ∂VN , with prescribed surface

tractions τ̄i and surface couples µ̄i. Body forces fi and body couples bi apply everywhere in V. The equations of
motion and equilibrium equations on V are then (Germain, 1973):

τij,j − fi = ρüi,

µij,j − ϵijkτjk − bi = Iijω̈
c
j ,

∂VD ∪ ∂VN = ∂V,
∂VD ∩ ∂VN = ∅,

τ̄i = τij n̄j and µ̄i = µij n̄j on ∂VN ,

u̇i = ¯̇ui and ω̇c
i = ¯̇ωc

i on ∂VD,

(25)

where n̄j are the components of the normal unit vectors on ∂V and ∅ is the empty set.

3 Constitutive model

Having detailed the state variables that will be used in this work, we can now move to the specification of a particular
model in the Cosserat Breakage Mechanics family. We specify only the essential elements of the new model, while
leaving the detailed derivation of the model quantities to Appendix A, and the details of its numerical implementation
to the supporting information §4.

We start by proposing an internal energy (per unit volume) following a limit case of the internal energy presen-
ted in Riley et al. (2025). Unlike those authors, we ignore any consideration of pressure-dependent stiffness for the
sake of simplicity, as this effect is mainly important at much lower values of confining stress than what we consider in
this work. The energy potential with a suitable modification for the Cosserat continuum is:

Û(γe
ij , κ

e
ij , ρ, B) =

(
ρ

ρ⋆s

)n(
1

2
(1 − θγB)Ce

ijklγ
e
ijγ

e
kl +

1

2
(1 − θκB)dMax

2De
ijklκ

e
ijκ

e
kl

)
, (26)

where ρ⋆s is the unstressed solid density that is a fixed material constant, n is the degree of nonlinearity in the density,
and

Ce
ijkl =

(
K̄ −

¯2G

3

)
δijδkl + (Ḡ + Ḡc)δikδjl + (Ḡ− Ḡc)δilδjk, (27)

De
ijkl =

(
L̄− 2H̄

3

)
δijδkl + (H̄ + H̄c)δikδjl + (H̄ − H̄c)δilδjk. (28)

K̄, Ḡ, Ḡc, L̄, H̄ and H̄c are the nonlinear analogues of the corresponding terms in linear Cosserat elasticity. If we set
n = 0, we recover classical linear Cosserat elasticity without any consideration of density dependence. We can use the
same calibration relationships developed in Collins-Craft et al. (2020) to obtain the values of Ḡc, H̄ and H̄c, under
the same assumption of L̄ = 0. Non-zero values of n allow us to recover the observed dependence of stiffness on the
density of the material (Hardin and Drnevich, 1972). From this potential we are able to derive the elastic stress and
couple stress, the chemical potential and thermodynamic pressure, as well as the breakage energy by following the
standard procedures detailed in Appendix A.

We suppose that the yield surface of the material is given by

y =

(√
EB

Ec
(1 −B) − ζχ

)2

+

(
q

Mpe + ϕ(1 −B)c

)2

− 1 ≤ 0, (29)

where M is the stress ratio in the p− q plane given by a function specified below, Ec is the critical breakage energy, c
is the cohesion of the material, and ζ is a material parameter that controls the potential to dilate, and ranges from 0
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(no dilation) to 1 (maximally dilating). We note that in the case where we set c = 0 and ζ = 0, we recover the yield
surface given in Collins-Craft et al. (2020).

We postulate that the plastic evolution rules of the system are given by (Tengattini et al., 2016)

Ḃ = λ ⟨F ⟩ 2(1 −B)√
EBEc

cos2(ω), (30)

ϕ̇p = λF
2ϕ(1 −B)

pe

√
EB

Ec
sin2(ω), (31)

γ̇p
s = λ

2q

(Mpe + ϕ(1 −B)c)2
, (32)

where ⟨·⟩ = (· + | · |)/2 are Macaulay brackets, and F is a function given by

F =

√
EB

Ec
(1 −B) − ζχ, (33)

and ω is a coupling angle that allocates dissipation between plastic volumetric straining and grain breakage given by

ω =
π

2
(1 − χH(F )), (34)

where H(·) is the Heaviside step function, defined such that

H(x) =

{
0 if x < 0,

1 if x ≥ 0.
(35)

Tengattini et al. (2016) demonstrated the model’s ability to represent crushable granular soils that can experience
dilation. We generalise their rules slightly to include cohesion in the expression for the shear strain rate invariant,
allowing us to model granular rocks in addition to granular soils. We can use (63) of Appendix A.1 to transform (31)
into an expression for ε̇pv, as well as the derivative of (32) with respect to the plastic deviatoric strain and curvature
rates to deduce the flow rule for the complete set of plastic strain and curvature rates:

γ̇p
ij = λ

[
F

2(1 −B)

3pe

√
EB

Ec
sin2(ω)δij +

2

(Mpe + ϕ(1 −B)c)2

(
h⋆
1s

e
ij + h⋆

2s
e
ji

)]
, (36)

κ̇p
ij = λ

2

[ℓ(Mpe + ϕ(1 −B)c)]2
(
h⋆
3mij + h⋆

4mji

)
. (37)

As is well-known, densely-packed sands dilate under shear, and the function F allows the model to express how the
behaviour changes as the density and GSD evolves. When F < 0 the system dilates due to grain rearrangement
without grain breakage i.e. the rate of breakage Ḃ = 0 and the plastic rate of the solid fraction ϕ̇p < 0. We refer
to this as the dilative side of the critical state line. When F > 0 grains break and the solid fraction increases i.e.
Ḃ > 0 and ϕ̇ > 0. We will refer to this as the compactive side of the critical state line. When F = 0 we are in
a state of zero breakage growth and isochoric plastic straining, i.e. the critical state. In this model, the critical
state appears at a lower confining stress than the peak deviatoric stress. The mathematical form of (34) allows us to
guarantee all the volumetric straining goes to solid fraction changes when F < 0, while smoothly varying the alloc-
ation between grain breakage and pore collapse when F > 0. This is a point of contrast with the model specified in
Collins-Craft et al. (2020), where ω is a fixed material constant that does not evolve in time, and dilation cannot occur.

We take M to be dependent on the position of the state relative to the critical state by:

M = M0[1 + ζH(−F )F ]. (38)

Thus, where our system is dense M is larger, while looser systems have a correspondingly lower value of M , matching
experimental observations (Bolton, 1986; Wichtmann, 2016). M0 is given by another function

M0 =
3 sin(φ)√

3 cos(β) − sin(β) sin(φ)
, (39)

where φ is the internal friction angle (a material parameter with φ ≥ 0) and β is the Lode angle. Experimental and
theoretical results have shown that the Lode angle plays a role in the localisation behaviour of rocks such as sandstones
(Couture and Bésuelle, 2022, 2023). In the Cosserat continuum, this angle may be defined as:

β =
1

3
arcsin

(
27

2

det(sij)

q3

)
, (40)
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and classically lies between −π/6 and π/6 (Papamichos, 2010). We use the definition such that in triaxial compression
the Lode angle is equal to π/6.

Finally, we must make a constitutive assumption about the evolution of the solid density. Most commonly, solids
are assumed to have a fixed density, but here we consider its inevitable change driven by elastic volumetric straining.
We follow Alaei et al. (2021) in specifying

ρ̇s = ρsχε̇
e
v. (41)

The model is now fully specified, with the detailed derivations and the proof of the non-negativity of the rate of
dissipation (as required by the second law of thermodynamics) presented in Appendix A. We note here in passing that
by setting n = 0, c = 0, ζ = 0 and χ = 1 we can recover the model specified in Collins-Craft et al. (2020) for ω̄ = 0◦

and loading at constant volume. For any other system values or different load conditions, we will recover different
behaviour due to the changes that we have made to the volumetric parts of the model.

4 Parametric study

4.1 Calibration

We calibrate the proposed model against Bentheim sandstone, which has been the subject of extensive experimental
studies, and has a large-grained composition of approximately 95% quartz (Klein et al., 2001), which is ideal for
demonstrating the capabilities of the model. We assume samples to start in an unbroken state (B = 0) and choose
an initial relative solid fraction of χ0 = 0.5, so that in combination with the upper and lower bound given below in
Table 2, the initial solid fraction ϕ0 = 0.775. We select the potential to dilate ζ = 0.5 as the middle value of its
possible range. We then obtain the other parameter values from the literature, either directly or via back-calibration
using our chosen initial values for the state variables and the parameter ζ.

The minimum grain dmin = 1 µm size is chosen following arguments in Kendall (1978) and Buscarnera and Einav
(2012). The maximum grain size dMax is as reported for Bentheim sandstone in Klein et al. (2001). α is chosen in
line with studies of the GSDs of mature faults (Sammis et al., 1986, 1987; Sammis and Biegel, 1989; An and Sammis,
1994). The derived granulometric parameters are then calculated via (4), (5) and (6). The lower and upper limit
leading terms are estimates of the plausible range based on the reported porosities in Klein et al. (2001) (22.8%) and
Noël et al. (2021) (24.0%). The upper and lower solid fraction bounds are taken directly from Cil et al. (2020), in
the absence of any experimental evidence on what the appropriate values would be for this sandstone. The density
nonlinearity index is chosen to be 3, in line with Alaei et al. (2022). In general this index can be calibrated against
standard triaxial compression tests. The nonlinear bulk and shear moduli are taken from the values reported in Noël
et al. (2021), divided by their reported solid fraction raised to the density nonlinearity index. These can be obtained
either by fitting to the load-displacement curve of standard triaxial compression tests, or using p- and s-wave velocities.
We use the three-dimensional kinematic Cosserat model, which determines the values of g⋆i and h⋆

i . L̄ is set to zero
as we do not expect the torsional effects to play any role in our intended application. We then use the calibration
relationships derived in Collins-Craft et al. (2020), which give the values of Ḡc, H̄ and H̄c by

Ḡc =
3Ḡ

2(h⋆
1 − h⋆

2)
, (42)

H̄ =
3Ḡ

2(h⋆
3 + h⋆

4)
, (43)

H̄c =
3Ḡ

2(h⋆
3 − h⋆

4)
, (44)

The density of the solid material is taken by dividing the reported bulk density in Noël et al. (2021) by their reported
solid fraction, two quantities that can be measured by weighing samples when both dry and wet. The solid fraction
can also be obtained by x-ray micro-computed tomography (µ-CT) scans where available.

This leaves us three remaining constants to calibrate using experiments. Ec is typically obtained from an isotropic
volumetric compaction test and finding the point at which the grains start to break, a quantity often denoted P ⋆ in the
literature. Using the initialisation method given in supporting information §3, the set of state variables corresponding
to this stress state can be obtained, and the value of EB can thus be calculated. As q = 0 at this point, (29) can be
rearranged in terms of Ec to give

Ec =
EB(1 −B)2

(1 + ζχ)2
. (45)

In our case we take the value of the crushing pressure given in Klein et al. (2001) (390 MPa) as P ⋆, noting that for
their samples of Bentheim sandstone they report an initial solid fraction of 0.772 (corresponding to χ0 = 0.44). We
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thus use this value as the solid fraction in the stress-free state for the calibration, rather than our assumed initial
value of 0.775 (corresponding to χ0 = 0.5). Calculating the corresponding set of state variables for P ⋆, we calculate
EB and χ at this state and obtain our value of Ec by substituting them in to (45).

φ can be obtained by observing the ratio between p and q in a triaxial test when the system enters the critical
state, while c can be determined by using lines-of-best fit from triaxial compression tests done at very low confining
stresses. Here, we obtain φ and c by a standard least squares fitting procedure that minimises the norm of y evaluated
at each experimental data point. We use the results of the triaxial compression tests reported for Bentheim sandstone
in Klein et al. (2001), Klein and Reuschlé (2003) and Baud et al. (2006) as the source of the calibration data, taking the
values reported at “the onset of dilatancy” (and using PlotDigitizer (2025) to extract the relevant data from Figure 5
of Klein et al. (2001)), and excluding the isotropic compaction tests. The final set of obtained calibrated values is
contained in Table 2.

Basic granulometric parameters
Minimum grain size dmin 0.001 mm
Maximum grain size dMax 0.5 mm

Ultimate GSD exponent α 2.6
Derived granulometric parameters

First grading index θγ 0.818
Second grading index θκ 0.901
Third grading index θI 0.919

Porosimetric parameters
Upper limit leading term αupper 0.2
Lower limit leading term αlower 0.25

Upper solid fraction bound uϕ 0.12
Lower solid fraction bound lϕ 0.16

Mechanical parameters
Density nonlinearity index n 3

Nonlinear bulk stiffness K̄ 19363 MPa
Nonlinear shear stiffness Ḡ 15718 MPa

Cosserat kinematic model hi parameters {h⋆
1, h

⋆
2, h

⋆
3, h

⋆
4} {6/5, 3/10, 6/5, 3/10}

Cosserat kinematic model gi parameters {g⋆1 , g⋆2 , g⋆3 , g⋆4} {8/9,−2/9, 8/9,−2/9}
First nonlinear Cosserat shear stiffness Ḡc 26197 MPa

Nonlinear Cosserat torsion stiffness L̄ 0 MPa
Second nonlinear Cosserat shear stiffness H̄ 15718 MPa
Third nonlinear Cosserat shear stiffness H̄c 26197 MPa

Unstressed solid mass density ρ⋆s 2.645 × 10−3 g/mm3

Critical breakage energy Ec 3.21 MPa
Internal friction angle φ 0.612

Cohesion c 21.5 MPa
Potential to dilate ζ 0.5

Table 2: Calibrated parameter values for the model developed in this paper.

To demonstrate the capabilities offered by the proposed model, we compare it with the model detailed in Collins-
Craft et al. (2020), which entails calibrating that model against the same data. We note that the model in Collins-Craft
et al. (2020) does not possess certain parameters or their equivalents (namely, the porosimetric terms, the density
nonlinearity index, the unstressed solid mass density and the cohesion). In the newly proposed model, M and ω are
functions of the state, the parameter φ is calibrated against data and the parameter ζ is chosen to be in the middle of
its possible range. In the previous model from Collins-Craft et al. (2020), M̄ is a parameter that we calibrate against
data and ω̄ is a parameter chosen to be in the middle of its possible range. We add a bar to distinguish between the
usages of these quantities as variables and parameters, and further distinguish ω̄ by reporting its value in degrees,
while the variable ω is in radians.

We set the bulk stiffness K and shear stiffness G to have the same values in the original model as the effective
nonlinear stiffness of the new model at 200 MPa. We obtain Ec in a conceptually similar fashion to the new model (by
calculating the state variables at the crushing pressure, calculating the value of EB corresponding to these variables,
rearranging the yield function to make Ec the subject and substituting in the appropriate values). We obtain M̄ by
varying its value and minimising the norm of y against the experimental data, in the same fashion as φ and c were
obtained for the new model. The full set of calibrated values for the model presented in Collins-Craft et al. (2020) are
given in Table 3.
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Basic granulometric parameters
Minimum grain size dmin 0.001 mm
Maximum grain size dMax 0.5 mm

Ultimate GSD exponent α 2.6
Derived granulometric parameters

First grading index θγ 0.818
Second grading index θκ 0.901
Third grading index θI 0.919

Mechanical parameters
Bulk stiffness K 9.58 × 103 MPa

Shear stiffness G 7.78 × 103 MPa
Cosserat kinematic model hi parameters {h⋆

1, h
⋆
2, h

⋆
3, h

⋆
4} {6/5, 3/10, 6/5, 3/10}

Cosserat kinematic model gi parameters {g⋆1 , g⋆2 , g⋆3 , g⋆4} {8/9,−2/9, 8/9,−2/9}
First Cosserat shear stiffness Gc 13.0 × 103 MPa

Cosserat torsion stiffness L 0 MPa
Second Cosserat shear stiffness H 7.78 × 103 MPa
Third Cosserat shear stiffness Hc 13.0 × 103 MPa

Critical breakage energy Ec 6.50 MPa
Slope of the critical state line in the p− q plane M̄ 2.04

Coupling angle ω̄ 45 ◦

Table 3: Calibrated parameter values for the model presented in Collins-Craft et al. (2020).

The yield surfaces obtained using the calibrated values (with ϕ = 0.772 for the model presented in this paper)
against the experimentally obtained values are shown in Figure 2.

0 50 100 150 200 250 300 350 400

p (MPa)

0

100
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300

q
(M

P
a)

Baud et al. (2006)

Klein & Reuschlé (2003)

Klein et al. (2001)

New model yield surface

Original model yield surface

Figure 2: Yield surfaces of the model presented in this paper and the model presented in Collins-Craft et al. (2020),
and the experimental values from Klein et al. (2001), Klein and Reuschlé (2003) and Baud et al. (2006) used to
calibrate the relevant parameters.

Figure 2 shows that the new model is able to fit the experimental data substantially better than the original model.
The tests done at low confinement stresses clearly point towards Bentheim sandstone having cohesion, which the new
model accommodates, while the original model cannot. Also visible in the experimental data is a slight non-convexity
of the yield surface at low confining stresses, which only the new model can match. In general, we are not aware of
any previously developed model that has been fitted to these data points that could recover this observation, and
very often classical plasticity models insist on the convexity of the yield surface. This restriction can be lifted without
affecting the non-negativeness of the rate of dissipation, as demonstrated in Appendix A.1. As such, we conclude that
the new model more accurately describes the initiation of plasticity than the original model, at low, intermediate and
high ranges of confining stress.

We observe how the yield surface of the new model changes as we vary the breakage index and the relative solid
fraction, in Figure 3.
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Figure 3: The changes in the yield surface in p− q space as (a) the breakage is varied from 0 to 0.5 in increments of
0.1 and as (b) the relative solid fraction is varied from 0 to 1 in increments of 0.25.

As the breakage value increases, the yield surface grows steadily larger and moves rightward, with decreasing shear
strength before yield at lower confining stresses and increasing shear capacity at higher confining stresses. This is the
same pattern as for the model in Collins-Craft et al. (2020), other than an absence of decrease of shear strength at
low confining stresses. Similarly, as the solid fraction is increased the yield surface also enlarges, although the effect
on the shear behaviour is much smaller than that of the breakage index.

We can also examine the effect of changing the parameter ζ, the tendency to dilate, on the system, varying from
ζ = 0 (minimal dilation) to ζ = 1 (maximal dilation), and shown in Figure 4.
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Figure 4: The changes in the yield surface in p− q space as ζ is varied from 0 to 1 in increments of 0.2.

The degree of non-convexity in Figure 4 changes with ζ. This is a necessary consequence of the system softening
with dilation, in a manner analogous to the softening with increasing wetting in unsaturated soil mechanics, where
non-convex yield surfaces are common (Sheng et al., 2008). The point at which the convexity of the yield surface
changes does not require any special numerical treatment to deal with the nonsmooth behaviour, as both Ḃ and ϕ̇p

will be zero at this point and so only the shear plastic flow component will be non-zero.

4.2 Comparison with the drained triaxial tests of Klein et al. (2001)

In order to validate the performance of our model and demonstrate its advantages as compared to the model developed
in Collins-Craft et al. (2020), we conduct a comparison with the drained triaxial compression tests on Bentheim
sandstone performed by Klein et al. (2001). The relevant loading conditions are shown in Figure 5.
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τ11 = p0

τ22 = p0

τ33 = p0

Isotropic compression

γ̇11

τ22 = p0

τ33 = p0

Triaxial compression

Figure 5: The two stages of the drained triaxial compression test: isotropic compression with τ11 = τ22 = τ33 until
the target confining stress is reached followed by triaxial compression with τ22 = τ33 at the target confining stress
and axial loading provided at a fixed strain rate. All curvatures and couple-stresses are fixed to zero during both
deformation phases.

We set the parameters of our new model to those described in Table 2, with the initial solid fraction in the stress-
free configuration set to ϕ = 0.772. We similarly set the parameters of the original model to those reported in Table 3.
The data sets for comparison are taken from Figure 3(a) of Klein et al. (2001), digitised with PlotDigitizer (2025)
by selecting the points at which markers are plotted. For each confining stress, we perform the isotropic compression
to the target confining stress p0 in one step, obtaining the corresponding elastic strains analytically for the original
model (γ11/22/33 = p0/3K), and numerically obtaining the elastic strains, density and solid fraction for the new model
following the method described in supporting information §3, and choosing to update ϕ0. For each test, we start the
simulation after the initial state has been obtained, and we load the sample under controlled axial strain γ11 up to
0.12 using the numerical methods detailed in supporting information §4.
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Figure 6: Comparison of the predictions of the new and original model during drained triaxial compression with
experimental data from Klein et al. (2001), for (a) 120 MPa confining pressure, (b) 180 MPa confining pressure, (c)
250 MPa confining pressure, (d) 300 MPa confining pressure, and (e) 350 MPa confining pressure.

In Figure 6, we truncate the simulation results to extend slightly further than the experimental data points for
each simulation. We observe that the performance of the new model is able to capture the transition between the
relatively flat stress-strain curves observed at lower confining pressures to those that feature apparent hardening at
higher confining pressures. Visible in the new model are small instances of apparent softening (or “brittleness”) that
the original model (which is always hardening) is unable to reproduce. Small drops in the stress-strain curve are
observed experimentally in what is often referred to as the “shear-enhanced compaction” regime, are associated with
the formation of compaction bands, and have been observed in Bentheim sandstone (e.g. in Klein et al. (2001) and
Baud et al. (2006)), Bleurswiller sandstone (Heap et al., 2015), Tuffeau de Maastricht (Wu et al., 2019) and artificial
rocks formed from glass beads (Carbillet et al., 2022), among others. The ability to predict the experimental stress-
strain curve of real rocks when the original model could not, demonstrates the importance of the more sophisticated
volumetric behaviour in the model developed in this paper.

4.3 Simulations and stability analysis of shear tests

In order to understand the mechanical behaviour as well as the localisation tendency of the system we consider
two loading cases, shearing at constant volume, which approximates the fast undrained shear that faults typically
experience, and shearing at constant confining stress, which approximates the behaviour of the system under slow
drained loading. Per Sulem et al. (2011) 200 MPa is a representative pressure for the depth at which seismic faulting
typically occurs, so we choose this as our central value for the initial confining pressure in both load cases. We
confine the system uniformly (that is γe

11 = γe
22 = γe

33 at the start of the simulation, using the initialisation method
described in supporting information §3, without adjusting the imposed solid fraction value) and simulate from this
point while maintaining the appropriate boundary condition while applying 0.2 strain in the γ12 and γ21 entries, using
the numerical methods detailed in supporting information §4. We show the relevant loading conditions in Figure 7.
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Figure 7: The two stages of the confined shearing test: isotropic compression with τ11 = τ22 = τ33 until the target
confining stress is reached followed by shearing applied to γ̇12/21 with γ̇22 = γ̇33 = 0, starting at the strains associated
with the target confining stress. When shearing under constant volume γ̇11 = 0, when shearing under constant
confining stresses τ̇11 = 0. All curvatures and couple-stresses are fixed to zero during both deformation phases.

Once the results of each simulation have been obtained, a linear stability analysis is conducted where the system
is perturbed and we study whether the perturbations grow or decay in time. We fix the perturbation to be horizontal
i.e. ñi = {1, 0, 0}, as analyses allowing the band orientation to vary have shown this to be the orientation with the
fastest growth rate. An eigenvector analysis is also undertaken to qualitatively characterise the nature of the shear
band. These procedures are detailed in supporting information §2.

4.3.1 Sensitivity to χ

Changing the initial value of the relative solid fraction χ0 allows us to study the effect of changing the initial volumetric
behaviour of the new model. In the original model, we can change the values of ω̄ to similarly vary the volumetric
behaviour. The results of these simulations are shown in Figure 8 for constant volume shearing.
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Figure 8: The results of simulations of shearing at constant volume with an initial confining stress of 200 MPa,
using the model presented in this paper (χ ∈ {0.0, 0.5, 1.0}) and the model presented in Collins-Craft et al. (2020)
(ω̄ ∈ {0◦, 45◦, 90◦}). (a) The shear stress τ12 against the increment of shear strain ∆γ12, (b) the deviatoric stress
invariant q against the mean stress p, (c) the breakage index B against the increment of shear strain ∆γ12, and (d)
the solid fraction ϕ against the increment of shear strain ∆γ12. The quantity ϕ does not exist in the original model,
and hence only the new model is shown in subfigure (d).

Figure 8 demonstrates that under varying χ0 or ω̄, the trends remain broadly similar. As χ0 increases, the stress
that can be sustained prior to yielding also increases slightly. By contrast, variations in ω̄ have no impact on the point
at which yielding first occurs. For all values of χ0, the apparent softening experienced by the system is substantially
less than for the corresponding system in the original model, although the general trends are similar (a coupling angle
ω̄ favouring dissipation by plastic volumetric straining (ω̄ = 90◦) shows more apparent softening than ω̄ favouring
dissipation by grain breakage (ω̄ = 0◦), likewise a relative solid fraction χ0 that favours volumetric compaction shows
more apparent softening than χ0 favouring grain breakage). The original model displays substantially more grain
breakage after a modest amount of shearing than the new model. The interaction between grain breakage and solid
fraction in the new model allows the system to approach the critical state where the breakage state variable will
stop evolving. The original model has a critical state at B = 1, while in the new model the F function allows the
critical state to be approached at any value of B. Hence, the new model is able to much more accurately model
the real physical behaviour of granular media, which can enter the critical state without requiring that the GSD has
reached its ultimate state. This has been demonstrated in Tengattini et al. (2016), where an extensive comparison
with experimental results was undertaken. For the solid fraction variable that is only available within the new model,
we see very little change in the value of the solid fraction, as is expected for constant volume loading conditions. We
conclude that while both models demonstrate variable volumetric behaviour, the new model changes in a comparat-
ively more stable way without extremely rapid increases in the value of the breakage index. Finally, the new model
arrives at the yield surface at smaller values of stress and strain, due to the better fitting of the yield surface to the ex-
perimental results. Further variables of interest from these simulations are shown in supporting information Figure S.1.

The sensitivity to changes in the relative solid fraction χ0 and the coupling angle ω̄ can likewise be studied for
constant confining stress, shown in Figure 9.
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Figure 9: The results of simulations of shearing at constant confining stress of 200 MPa, using the model presented
in this paper (χ ∈ {0.0, 0.5, 1.0}) and the model presented in Collins-Craft et al. (2020) (ω̄ ∈ {0◦, 45◦, 90◦}). (a) The
shear stress τ12 against the increment of shear strain ∆γ12, (b) the deviatoric stress invariant q against the mean
stress p, (c) the breakage index B against the increment of shear strain ∆γ12, and (d) the solid fraction ϕ against the
increment of shear strain ∆γ12. The quantity ϕ does not exist in the original model, and hence only the new model
is shown in subfigure (d).

Figure 9 shows that in the original model, the stress paths of τ12, p and q diverge as ω̄ varies, while in the new
model, they converge to similar values. As for the constant volume system, this behaviour may be attributed to the
different critical states of the two models, with the new model able to approach its critical state at any value of B, while
the original model can only do so as B → 1. The system with ω̄ = 90◦ experiences no breakage and so finds a steady
state where the underlying state variables no longer evolve (notwithstanding that plastic volumetric strains continue
to accumulate, so the system is not in the critical state). In comparison to the constant volume loading condition, we
note that both models produce more grain breakage, but the difference is more significant in the new model, which also
experiences a substantial increase in the solid fraction of the system, demonstrating the more efficient grain packing
that occurs as the grain size distribution becomes finer. Further variables of interest from these simulations are shown
in supporting information Figure S.2.

We also examine the localisation behaviour of the system in Figure 10, using the methodology that is detailed in
supporting information §2. To briefly summarise, we perturb the displacement and micro-rotation fields and observe
whether those perturbations grow or decay in time. We find the fastest growing wavelength (if such a wavelength
exists) of the perturbation and take that to be twice the width of the shear band. We also evaluate the eigenvalues
of the acoustic tensor to determine whether the shear band is compacting or dilating. We truncate the analysis to a
shear strain increment of 0.065 as the linear stability analysis is only strictly valid up to the moment of localisation.
Beyond this point, it can give only an indication of possible behaviour.
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Figure 10: The results of the localisation analysis of simulations of shearing using the model presented in this paper
(χ ∈ {0.0, 0.5, 1.0}) and the model presented in Collins-Craft et al. (2020) (ω̄ ∈ {0◦, 45◦, 90◦}). (a) The predicted band
thickness against the increment of shear strain ∆γ12 for shear at constant volume, (b) the product of the orientation
of the shear band with the eigenvector associated with the zero eigenvalue of the acoustic tensor against the increment
of shear strain ∆γ12 for shear at constant volume, (c) the predicted band thickness against the increment of shear
strain ∆γ12 for shear at constant confining stress, and (d) the product of the orientation of the shear band with the
eigenvector associated with the zero eigenvalue of the acoustic tensor against the increment of shear strain ∆γ12 for
shear at constant confining stress.

Figure 10 shows that in both load conditions the original model typically requires more shear in order to induce
a localisation, and that the initial localisation prediction is followed by a rapid decline, and then growth. The new
model by contrast demonstrates monotonic growth for all simulations except a relative solid fraction of χ0 = 0.0 under
constant volume, which demonstrates an initial wide localisation that rapidly declines in width before steadily widening
again. Notably, in the new model, we observe that the dependence of the initial localisation width on the initial solid
fraction ϕ0 seems to be non-monotonic in the constant volume load condition. To our knowledge, the variation of
the shear band width with the solid fraction has not been systematically studied experimentally, but in Alshibli and
Sture (2000) the inclination angle of shear bands in biaxial compression tests of sands did not vary monotonically with
sample density, particularly at higher confining stress. We take these results to be in alignment with the proposed
model prediction that ϕ does not play a strong role in initial shear band thickness, nor is there any particular guarantee
of monotonicity between ϕ and the band thickness. The original model displays a greater initial tendency towards
compaction in the shear band, but under constant volume conditions all systems trend steadily towards states of
pure shear. The systems that favour grain breakage show less tendency towards compaction, with the difference
being especially marked for the new model, where the χ0 = 1.0 system shows only a very light compactive tendency
initially. The key difference between the two load conditions is that while the constant volume system delocalises
slowly, the constant confining stress condition shows a period of steady growth before delocalising very rapidly. The
amount of shear required to delocalise varies with the relative solid fraction, with denser systems requiring greater
deformation. The original model produces bands that narrow further and then demonstrate the same tendency to
slow growth followed by rapid delocalisation. Both models demonstrate tendency towards plastic compaction under
this loading, with the original model showing a substantially stronger effect, as in the constant volume shearing load
cases. However, for the range of shear strain in which the shear bands are predicted to exist, there does not appear to
be any convergence towards a constant value, unlike in the constant volume case. While experimental measurements
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of band thicknesses in conditions equivalent to our own do not exist (to our knowledge), the thicknesses of the initial
localisations with respect to the constituent grain sizes (on the order of 10 grain sizes) are coherent with experimental
observations made in other test geometries (Mühlhaus and Vardoulakis, 1987; Hall et al., 2010; Andò et al., 2012).

4.3.2 Sensitivity to p

We may also consider the effect of varying p0, the initial confining pressure, on individual simulations. This represents
changes in the burial depth of the fault. We show the load paths of the new model varying p0 under constant volume
shearing in Figure 11.
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Figure 11: The results of simulations of shearing at constant volume, using the model presented in this paper and the
model presented in Collins-Craft et al. (2020) (both with p0 ∈ {100, 200, 300} MPa). (a) The shear stress τ12 against
the increment of shear strain ∆γ12, (b) the deviatoric stress invariant q against the mean stress p, (c) the breakage
index B against the increment of shear strain ∆γ12, and (d) the solid fraction ϕ against the increment of shear strain
∆γ12. The quantity ϕ does not exist in the original model, and hence only the new model is shown in subfigure (d).

Figure 11 shows that changes to the value of p0 result in only modest changes to the quantitative behaviour of
the system, with qualitative behaviour remaining very similar in this load case. In all cases, the systems demonstrate
an apparent softening and an increase in B, with the apparent softening and value of B both being greater with
increases in initial confining pressure. The new model demonstrates much less breakage growth than the original
model in this system, and the final value of B shows relatively little sensitivity to the initial confining pressure p0,
and the solid fraction increases only slightly. The original model demonstrates much greater rates of breakage growth,
accompanied by more dramatic apparent softening. For both models, the system with the highest initial confining
pressure (p0 = 300 MPa) shows some post-yield hardening before softening. Further variables of interest from these
simulations are shown in supporting information Figure S.3.
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Figure 12: The results of simulations of shearing at constant confining stress, using the model presented in this paper
and the model presented in Collins-Craft et al. (2020) (both with p0 ∈ {100, 200, 300} MPa). (a) The shear stress
τ12 against the increment of shear strain ∆γ12, (b) the deviatoric stress invariant q against the mean stress p, (c) the
breakage index B against the increment of shear strain ∆γ12, and (d) the solid fraction ϕ against the increment of
shear strain ∆γ12. The quantity ϕ does not exist in the original model, and hence only the new model is shown in
subfigure (d).

Figure 12 shows that under constant confining pressure changing the value of p0 can result in notable qualitative
changes to the system, in contrast to the behaviour under constant volume shearing. For the original model, all
systems demonstrate rapid growth in the value of the breakage index B, initial decreases in the value of p followed by
increases, and strong initial compactive tendencies that then move towards a state of pure shear. While the values
of q in the original model initially show some apparent softening for the lower initial confining stress simulations,
they ultimately begin increasing again, while for the system under the greatest initial confining stress, this increase is
monotonic. For the new model, we observe that the evolution of the system is slower than for the original model in
all cases, with smaller (although still significant) increases in the value of B, as well as significant densification. While
the system with the highest initial confining stress follows a qualitatively similar trajectory to the original model,
the system at the lowest initial confining stress demonstrates a continuous slow decline in the value of τ12, and the
trajectory in the p − q plane changes very little. This indicates that the system is close to the critical state. This
qualitative difference in behaviour can only be achieved with the more realistic representation of the critical state in
the new model. Further variables of interest from these simulations are shown in supporting information Figure S.4.

We examine the changes in the system’s localisation behaviour as the initial confining pressure p0 is varied in Figure 13.
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Figure 13: The results of the localisation analysis of simulations of shearing, using the model presented in this paper
and the model presented in Collins-Craft et al. (2020) (both with p0 ∈ {100, 200, 300} MPa). (a) The predicted band
thickness against the increment of shear strain ∆γ12 for shear at constant volume, (b) the product of the orientation
of the shear band with the eigenvector associated with the zero eigenvalue of the acoustic tensor against the increment
of shear strain ∆γ12 for shear at constant volume, (c) the predicted band thickness against the increment of shear
strain ∆γ12 for shear at constant confining stress, and (d) the product of the orientation of the shear band with the
eigenvector associated with the zero eigenvalue of the acoustic tensor against the increment of shear strain ∆γ12 for
shear at constant confining stress.

In Figure 13 for both load cases the initial localisation behaviour depends strongly on the initial confining pressure.
In constant volume conditions, the higher the initial confining pressure p0, the more shearing is required to induce a
localisation, and initial localisations are wider for higher confining pressure. However, as shear continues, the more
strongly confined systems produce narrower shear bands. The constant confining stress systems in the original model
all show an initial localisation, then a period of steady increase in width, before rapidly delocalising. In the new
model the highest confining stress system (p0 = 300 MPa) does not localise, and the lowest confining stress system
(p0 = 100 MPa), grows steadily in width rather than rapidly delocalising. The intermediate system exhibits the same
pattern of behaviour as the original model. Once again, all systems indicate that they support a compacting shear
band, with the systems all evolving towards pure shear bands in the case of shearing under constant volume (noting
that in the new model the least-confined system is very close to pure shear from the start of the localisation). In
the constant confining stress case, the systems all indicate compacting shear bands, with the degree of compaction
increasing monotonically with the confining stress. Once again, we observe that the size of the shear band relative to
the characteristic grain size is coherent with experimental observations, albeit obtained in other geometries (Mühlhaus
and Vardoulakis, 1987; Hall et al., 2010; Andò et al., 2012).

4.4 Finite element simulations

Formally, the linear stability analysis is only valid up until the moment of localisation, as an assumption of the analysis
is a bifurcation from a homogeneous to a non-homogeneous state of deformation. Thus, the trends observed after this
point can at best be taken as indicative of the overall behaviour. In order to obtain a more exact analysis of the post-
localisation behaviour, we use instead a method that does not require any assumption of homogeneity, namely the
finite element method. We set up the finite element simulations as described in supporting information §5 based on the
Numerical Geolab framework (Stefanou and Stathas, 2023), and consider the same variation in the loading conditions
as well as χ0 and p0 as for the linear stability analysis. All systems have zero horizontal and vertical displacements and
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micro-rotations fixed on the bottom of the system and sufficient horizontal displacement on the top boundary to cause
a homogeneous strain of 0.2, with the appropriate initial isotropic confining stress applied throughout. The constant
volume simulations have zero vertical displacement fixed at the top while the constant confining stress simulations
have a constant vertical stress applied. In both cases, the micro-rotations at the top boundary are fixed to zero, so
as to recover the classical continuum in the “far-field” limit well away from the shear band. This replicates typical
boundary conditions in experimental apparatuses, but couple-stresses at the boundary can be obtained experimentally
by shearing using an interface with rough teeth and the ortho-fibre concept (Froiio et al., 2010; Froiio and Zervos,
2019; Vardoulakis, 2019).

We construct spatiotemporal plots of the evolution of the key variables to demonstrate the qualitative behaviour
in Figure 14.

Figure 14: Spatiotemporal plots of three finite element simulations. The first column (subfigures (a), (d), (g)) are
the values of B, the second column (subfigures (b), (e), (h)) are the values of ϕ while the third column (subfigures
(c), (f), (i)) are the values of γ̇21. The first row (subfigures (a), (b), (c)) represent the constant volume simulation
with χ0 = 0.0 and p0 = 200 MPa, the second row (subfigures (d), (e), (f)) the constant confining stress simulation
with χ0 = 0.5 and p0 = 200 MPa and the third row (subfigures (g), (h), (i)) the constant volume simulation with
p0 = 100 MPa and χ0 = 0.5.

In Figure 14, we show the results of three simulations that represent the three classes of behaviour that can
be observed over the full variation of p0, χ0 and the loading conditions. The first class (shown in the first row
of subfigures) is localisation into a relatively homogeneous band width where the rate of shear straining shows an
increasing concentration at the centre of the band, suggesting a transition from continuous to discontinuous bifurcation
of the system (Rice and Rudnicki, 1980), where all deformation is accommodated in the band and elastic unloading
outside the band becomes possible. The second class (shown in the second row of subfigures) is localisation into a
shear band that then begins to delocalise. Here we can see that the shear strain rate decreases dramatically in the
centre of the band and two zones featuring the most intense shearing move outwards from the centre until reaching
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the boundary. At the point at which the influence of the boundaries becomes significant, the system shears in a
near-homogeneous fashion accompanied by steady GSD changes and densification throughout. The third class (shown
in the third row of subfigures) is localisation into a band featuring increasing grain breakage and densification (similar
to the first class), but accompanied by the formation of regions of dilation outside the band.

4.5 Comparison of band thickness predictions from linear stability analyses and finite
element simulations

We compare the predictions of the LSA against the results of the FEM analyses with respect to the initial band
thickness in Figure 15, where we have conducted additional simulations with relative solid fraction χ0 ∈ {0.25, 0.75}
and initial confining pressure p0 ∈ {150, 250} MPa to gain a clearer understanding of the variation of the system with
the problem parameters.
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Figure 15: The predicted shear band widths from the LSA, and those inferred from the FEM simulations based on
fitting on the spatial distribution of B and γp

21. For systems where the LSA predicts an initially very wide shear
bands that rapidly narrows, we take the minimum band width as the representative value. For the finite element
simulations, we take the first values at which the band width stabilises (i.e. where it isn’t unduly influenced by the
initial imperfection). (a) The initial shear band widths when shearing under constant volume and varying χ0, (b) the
initial shear band widths when shearing under constant confining stress and varying χ0, (c) the initial shear band
widths when shearing under constant volume and varying p0, and (d) the initial shear band widths when shearing
under constant confining stress and varying p0.

We observe in Figure 15 that the LSA predictions generally correspond very well to the width of the shear band in
the FEM simulations inferred by the technique in Appendix B. The only visible exceptions are the width inferred by
fitting over γp

21 when χ0 is equal to zero, and the width inferred by fitting over B when p0 = 300 MPa. In both cases,
the fitting overestimates the width of the band due to the influence of initial near-homogeneous growth in those values
prior to truly localising. Changing the initial solid fraction of the system χ0 does not lead to substantially different
initial shear band widths, in either constant volume or constant confining stress systems. We observe that the finite
element fittings with γp

21 also demonstrate the same nonmonotonicity with χ0 as the results from the linear stability
analyses that is observed in both load conditions. Similarly, we observe that changing the initial confining pressure
also does not induce dramatically different band widths, and the relationship between the initial confining pressure
and the shear band width is nonmonotonic. Both the LSA results and FEM fittings capture these trends, and there
is very close agreement in the predicted widths obtained with each method.
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4.6 Permeability reduction

Beyond the purely mechanical behaviour, the spatially complex evolution of the state variables captured in the finite
element simulations also influence the permeability of the system to fluids. We can calculate the ratio of the current
permeability at a point to its original permeability using (75).
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Figure 16: The ratio of the current permeability to the original permeability, for a selection of finite element system
simulated, at a selection of key strain increments. The first column of subfigures ((a), (c), (e), (g), (i)) are the
simulations under constant volume, while the second column of subfigures ((b), (d), (f), (h), (j)) are the simulations
under constant confining stress. The insets in subfigures (a) and (g) show the permeability ratio in the region defined
by the x-coordinate 5 to 20, with ratios less than 0.9 not shown.

Figure 16 demonstrates the very large differences in permeability evolution between the simulations under constant
volume and under constant confining stress. The general trend of the constant confining stress simulations (those in
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the right-hand column of Figure 16) is to have a relatively homogeneous decrease in the permeability ratio across the
system, other than where the effect of the boundaries becomes significant. The exception to this is the system that is
slowest to delocalise, that with p0 = 100 MPa. Due to the greater concentration of shearing at the centre of the band
thanks to the absence of complete delocalisation, this system induces more grain crushing and porosity reduction at its
centre, causing in turn larger decreases in the permeability than are observed for systems with initial conditions that
are (notionally) more favourable to grain crushing and pore collapse. Turning to the systems sheared under constant
volume (those in the left-hand column of Figure 16), we observe that in general the systems that favour grain breakage
over pore collapse (higher initial values of χ0) are those that feature the greatest reductions in permeability ratio,
indicating that within the proposed model the increase in tortuosity induced by the presence of large numbers of small
grains plays a more important role than the reduction in pore space when it comes to reducing the permeability ratio.
Of particular interest for the constant volume loading case is the changes induced outside the shear band. For the
system with χ0 = 0.5 and p0 = 200 MPa, we observe changes that depend on the amount of shearing applied to the
system. For low to moderate values of homogeneous shear straining, we see that the dilation that occurs outside the
band leads to increases in the permeability ratio, facilitating fluid flow. However, after a certain point small amounts
of breakage are induced which reverses this trend, and we see a small reduction in permeability outside the band
(relative to the peak permeability values, however the permeability remains greater than its initial value). Finally, for
the system with p0 = 100 MPa, we observe that increasing the shear strain monotonically increases the permeability
outside the band due to dilation.
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Figure 17: The permeability ratio at the centre of the band against the homogeneous shear strain for the systems
sheared under (a) constant volume and (b) constant confining stress.

In Figure 17 we may observe the evolution of the minimum value of the permeability ratio in the system against
the homogeneous shear strain. For both systems we observe that changing the initial relative solid fraction χ0 and
increasing the initial confining pressure p0 typically favour greater reductions in the permeability ratio. The constant
volume systems demonstrate a relatively constant shape, with fast initial reductions in permeability ratio followed by
much longer periods of smaller but steady decline. While two of the constant confining stress systems show this same
pattern (notably, the two systems that either do not delocalise during the simulation or do not localise at all), the
three other systems show “kinks” as the rate of permeability reduction decreases substantially before plateauing or
beginning to decline at steady rates. This behaviour is linked to the structural evolution of the band as it delocalises,
with plateaus in the permeability ratio being linked to the shearing (and hence evolution of B and ϕ) largely occurring
at the edges of the band, rather than in the centre. For the systems where the band reaches the edge of the system, the
evolution proceeds quasi-homogeneously, with the only variations due to the boundaries and the initial imperfection.
Hence, the centre resumes its evolution. As the χ0 = 1.0 system only just completes its delocalisation over the course
of the simulation, the system is still evolving towards the quasi-homogeneous evolution by accumulating breakage and
porosity reduction at the boundaries, and so no meaningful evolution of the permeability ratio at the centre occurs.
We note that under constant confining stress, after the p0 = 300 MPa system has completed its delocalisation, there
is very little difference between its permeability ratio and that of the p0 = 100 MPa system, demonstrating that the
continued concentration of shearing at the centre of the band for the latter system is able to drive similar amounts of
grain crushing and pore collapse as the greater confining stress induces with more diffused shearing.
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5 Discussion

5.1 Physical accuracy of the model

We have shown in §4.3 and §4.4 that changing the model parameters and state variables changes the physical char-
acteristics of the system by modifying the way in which the compaction and grain crushing coevolve and potentially
compete with dilation. This includes the shape of the resulting yield surface, where the model can accommodate
cohesion c that depends on the extent of the grain crushing B, classical convex yield surfaces that are able to capture
the increasing amount of energy required to crush grains as compaction continues, as well as non-convex yield surfaces
that arise in the proposed model as a consequence of dilation and reductions in the solid fraction ϕ at lower confining
stresses. This last factor allows for a substantially better match to experimental data on Bentheim sandstones than
was possible with the model that we developed in Collins-Craft et al. (2020). Once the model experiences plasticity,
changes in these material parameters are able to account for markedly different behaviours immediately post-yield,
while also capturing the tendency of the systems to evolve towards similar states, whereas the previously developed
model features trajectories that vary substantially as the parameter values are changed, even though the initial state
variables are the same. This again highlights the superior physical accuracy of the model developed in this paper, as
it respects the observed tendency of soils and rocks to converge to similar stress ratios under continued loading, even
if the initial behaviour is substantially different (Lade and Bopp, 2005; Bandini and Coop, 2011).

While in this paper we have focused on the modelling of a large-grained and porous sandstone, the formalism is
suitable for other types of minerals and can be applied to any sort of rock featuring distinct and crushable grains such
as limestones (Abdallah et al., 2021; Doré-Ossipyan et al., 2025).

5.2 Discrepancies between the predictions of the linear stability analysis and the finite
element simulations

In the constant volume load case the LSA predicted gradual delocalisation while the inferred shear band widths from
the FEM analyses remain stable. By contrast, the post-localisation behaviour under constant confining stress in the
FEM simulations corresponds very well with the predictions of the LSA. The shear band rapidly delocalises, as the
LSA predicted, and the speed of this delocalisation depends strongly on the values of χ0 and p0, as predicted. The only
meaningful difference between the LSA predictions and the results of the FEM simulations are for the χ0 = 1.0 and
p0 = 100 MPa systems, which delocalise more slowly than the LSA predicts, and the interaction with the boundaries
of the system that occurs for the most rapidly delocalising systems. We may observe that the underlying reason for
the interaction with the boundaries is that the shear bands under this loading condition concentrate their strain rate
at the boundaries of the band, which march steadily outwards. This behaviour is illustrated in Figure 18.
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Figure 18: The spatial distributions of the some key variables at homogeneous shear strain ∆γ21 = 0.05 for the
simulation with χ0 = 0.5 under constant confining stress (a) The spatial distribution of B, (b) the spatial distribution
of γp

21, and (c) the spatial distribution of γ̇21.

Figure 18 demonstrates clearly that while the shear band continues growing in the centre, the shearing occurs
preferentially at the edges of the band, causing it to grow outwards until the boundary conditions interfere with
further propagation.
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Figure 19: The results of simulations of shearing at constant volume and constant confining stress with χ0 = 0.5 and
an initial confining stress of 200 MPa, considering points either near the edge of the system or at the centre of the
band. (a) The shear stress τ21 against the increment of (homogeneous) shear strain ∆γ21, (b) the deviatoric stress
invariant q against the mean stress p, (c) the breakage index B against the increment of shear strain ∆γ21, and (d)
the solid fraction ϕ against the increment of (homogeneous) shear strain ∆γ21.

In Figure 19 we examine the different evolutions of the state variables inside and outside the shear band, taking
the central values of χ0 = 0.5 and p0 = 200 MPa as representative of the general behaviours. The values at the centre
of the shear band are those for the elements with the highest value of B at the end of the simulation, while the values
outside the band are taken to be the values five elements in from the top of the system, to avoid distortions from
the boundary. As expected, τ12 matches perfectly due to the need to maintain stress equilibrium, while p and q show
similar tendencies inside and outside the band for the constant confining stress system, but vary somewhat for the
constant volume system. Where the most dramatic differences are observed is in the evolution of the breakage and
solid fraction. Here, the local concentration of strain (noting that the amount of strain experienced in this central
element is much higher than the global homogeneous strain) drives the breakage higher rapidly. This drives in turn
a substantial increase in the solid fraction, both in order to stay within the bounds imposed by (18) and (19), but
also to maintain the necessary stress equilibrium, keeping in mind that for a fixed elastic strain, an increase in B will
reduce the stress while an increase in ϕ will increase the stress (via changing ρ). It is only as the band delocalises for
the constant confining stress system that we observe any substantial evolution of these quantities at the point that
was (initially) outside the band. The constant volume FEM simulation grows the breakage and solid fraction values
slightly faster than the constant confining stress system, due to a greater local concentration of shearing. Outside the
band, we observe a slight decrease in ϕ due to elastic dilation. Further variables of interest from these simulations are
shown in supporting information Figure S.5.

One of the key differences between the single element tests and the finite element systems is that the finite ele-
ment method is able to account for structural features that vary in space. The most important spatial variations
(other than the localisation into the shear band itself) are the outwards spreading of the shear strain rate observed
for the constant confining stress simulations, and the dilation observed for the constant volume tests. These two
phenomena cause the band to either experience less shear straining at the centre than would be expected, or permit
additional compaction to be accommodated in the band than the boundary conditions allow for single element tests.
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5.3 Permeability changes in real rocks

When considering the changes in permeability at the centre of the band shown in Figure 17, it is the χ0 = 1.0 system
that shows the most rapid initial reductions in permeability ratio, under both constant volume and constant confining
stress systems. The decrease in permeability in the constant confining stress system then pauses while the band expands
outwards. This behaviour indicates that not only are the densest (least porous) systems the ones that are likely to have
the lowest initial permeability, but that they are also likely to experience the greatest permeability reduction during
the formation of the shear band (notwithstanding that other systems may have lower permeability values in more
mature bands as they do not delocalise as strongly). Experimental values for the permeability of Bentheim sandstone
are typically in the range of 1–7.5×10−13 m2 (Vajdova et al., 2004; Fazio et al., 2023), so applying our reductions in
permeability ratio, we could expect to see permeability values at the centre of the shear band ranging from 1×10−18 to
7.5×10−16, depending on the initial relative solid fraction and the loading conditions applied to the system. The lower
part of this permeability range is more typical of claystones than sandstones (Neuzil, 2019), highlighting the dramatic
effect of breakage evolution and pore collapse on the hydraulic properties of the material, and further underlining the
importance of mechanical models that can account for this effect in the accurate modelling of faults, as such dramatic
permeability changes will substantially influence the hydraulic and thermal coupling that governs the behaviour of
the system. As the model developed in Collins-Craft et al. (2020) has no representation of the porosity (and plastic
volumetric compaction can occur indefinitely in that model, without regard to physical limits), it is unable to represent
the permeability in any meaningful way, given the strong dependence on the pore volume of the material.
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Figure 20: The ratio of the current permeability to the original permeability for the constant volume finite element
system with ζ = 1, χ0 = 0.5 and p0 = 100 MPa, at a selection of key strain increments. The inset shows the
permeability ratio in the region defined by the x-coordinate 5 to 17.5, with ratios less than 0.95 not shown.

In Figure 20, we examine the permeability ratio of a system sheared under constant volume using the central
parameter value χ0 = 0.5, a low confining pressure of p0 = 100 MPa, and ζ = 1.0, meaning that the system favours
dilation more than the other systems examined in this paper. We observe that in this case, we have a marked increase
in the permeability of the system in two bands on either side of the principal shear band, with the permeability
increasing more with increasing shearing. For all values of shear strain increment that these bands appear in, the
maximal permeability ratio not only increases, but the bands become wider. These numerical results correspond
to experimental observations on sands which have shown that even small amounts of grain breakage concentrated in
shear bands substantially reduces the permeability (Feia et al., 2016; Benammar et al., 2025). Directional permeability
measurements on Bentheim sandstone samples with a shear band featuring grain crushing have demonstrated strong
permeability decreases transverse to the shear band, but permeability increases parallel to it (Dautriat et al., 2009).
As grain crushing increases the tortuosity (thus reducing the permeability) isotropically, we would expect flow along
the cataclastic shear band to also decrease, contrary to the experimental evidence. From these results, we infer
the existence of structures favouring flow parallel to the band, an inference that is strengthened by experimental
observations on Fontainebleau sandstone, which have shown the presence of dilating zones with increased porosity
outside compacting shear bands (El Bied et al., 2002), and that these dilating zones are capable of absorbing pore
fluid expelled from the compacting region due to their much higher porosity and permeability (Sulem and Ouffroukh,
2006). Observations in the field, albeit on different types of rocks, have also shown the presence of zones with higher
permeability than the host rock that are immediately adjacent to the fault core (Wibberley and Shimamoto, 2003;
Micarelli et al., 2006).
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5.4 Comparison of the new and original models

In single-point simulations, we observe that the new model generally exhibits slower changes to its underlying state
variables, in particular the breakage index B. This occurs as the new model also includes the solid fraction, and as
the two variables co-evolve the system typically finds states that lead to ω increasing, and hence the rate of breakage
decreasing. By contrast, in the original model, the rate of breakage is meaningfully modified only by the value of B,
so it is only as B → 1 that the rate of breakage slows down. As a consequence of this behaviour, the new model offers
physically more realistic evolutions of the GSD with increasing strain. Changes in the initial relative solid fraction
modify the initial behaviour of the system in a way similar to changing ω̄ in the original model, but the balancing
of B and ϕ evolution in the new model causes the systems to tend towards similar states, regardless of the starting
position, while the original model can demonstrate extremely divergent behaviour depending on the value of ω̄. We
also observe that our new model consistently predicts the appearance of shear bands earlier than the original model,
specifically at the initiation of plasticity. While in real geomaterials it is generally not possible to cleanly distinguish
when plasticity commences, at the very least we can note that the early localisation of the new model is much closer
to observed experimental phenomena in triaxial tests on sand (Desrues et al., 2018), in which shear bands appear well
before the peak stress. Our model could easily be adapted to no longer cleanly separate between elastic and plastic
behaviours by reframing it in h2-plasticity (Einav, 2012), although we have elected to remain in a more classical
plasticity framework in this paper for reasons of numerical efficiency.

6 Conclusion

In this paper, we developed a constitutive model in the Cosserat Breakage Mechanics framework introduced in Collins-
Craft et al. (2020). This model features a number of improvements that increase its physical fidelity, namely density-
dependent elasticity and shear strength, the presence of cohesive strength and the inclusion of the solid fraction ϕ
as a state variable, enable the modelling of dilation at lower confining stresses, and the coevolution of the grain size
distribution with the pore space at higher confining stresses.

This model was then calibrated against experimental data obtained by other authors on Bentheim sandstone, demon-
strating the importance of the new model features to being able to accurately calibrate the yield surface to data
obtained over the full range of stresses up to to the crushing pressure. A comparison with triaxial compression tests
conducted by Klein et al. (2001) was conducted, demonstrating the ability of the model to represent the real beha-
viour of the Bentheim sandstone. We then conducted sensitivity analyses of the new model and comparisons with the
model presented in Collins-Craft et al. (2020) to examine the mechanical behaviour as the initial solid fraction ϕ0 and
the initial confining stress p0 were varied. These mechanical analyses were accompanied by predictions of the initial
localisation behaviour of the model, determined by linear stability analyses. These analyses highlight that localisa-
tion of the new model occurs directly upon the start of plasticity and that the resultant shear bands are compactive
at confining stresses typical of earthquake nucleation. In the case of constant confining stress, these bands further
demonstrate a tendency to delocalise.

The localisation results obtained by linear stability analyses were subsequently confirmed by one-dimensional finite
element simulations that showed close matching for the initial localisation width, and in the case of constant confining
stress, confirmed the predicted delocalisation behaviour. Under constant volume conditions, similar to the conditions
faults experience during fast undrained shearing, certain systems demonstrate not only the presence of compacting
shear bands, but regions of dilation immediately outside the band. Using a modified Kozeny–Carman permeability
law, we are able to analyse the evolution of the permeability across the system and observe both orders-of-magnitude
reduction of the permeability within the shear band, as well as increases in the permeability in the dilating regions
outside the band, corresponding to experimental observations made on similar sandstones.

This work has substantially increased the physical fidelity of the Cosserat Breakage Mechanics model family and
broadened the range of materials that it is able to accurately model. The inclusion of an additional state variable
gives the model the capability to model phenomena that were previously inaccessible, and enables a coupling of the
model with hydrological quantities such as pore fluid flow. This work can thus serve as the mechanical component
of coupled thermo-hydro-(chemo)-mechanical models that can fully elucidate the formation of the shear bands that
make up the core of seismogenic faults.
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A Model derivation

A.1 Thermodynamic admissibility

We wish to show that the model specified in §3 is thermodynamically admissible (that is, both the internal energy
and the dissipation are never negative).

Firstly, we consider the internal energy of the system. Our definitions of B, θγ and θκ ensure that B ∈ [0, 1],
θγ ∈ [0, 2

5−α ] and θκ ∈ [0, 4
7−α ] (all positive for typical values of α of 2.5 ∼ 2.7), the maximum grain size dMax > 0,

the density ρ > 0 (as is the unstressed solid density ρ⋆s), and the tensors Ce
ijkl and De

ijkl, when transformed to two-

dimensional matrices, are positive definite (provided physically admissible values of K̄ and Ḡ are chosen), meaning
their products with γe

ij and κe
ij (when both transformed to one-dimensional vectors) will both be positive. As such,

by inspection we can conclude that (26) is always non-negative.

Demonstrating the positiveness of the dissipation is substantially more elaborate. We start by declaring the Clausius–
Duhem inequality for an isothermal process in the Cosserat continuum:

D = τij γ̇ij + µij κ̇ij −
(
U̇ − U ρ̇

ρ

)
≥ 0, (46)

where U is the internal energy (we add the hat in (26) to distinguish between the value of internal energy (without
hat) and the function that returns its value given the state variables (with hat)) and D is the dissipation. From (26)
we recover the time rate of the internal energy:

U̇ =
∂Û
∂γe

ij

γ̇e
ij +

∂Û
∂κe

ij

κ̇e
ij +

∂Û
∂ρ

ρ̇ +
∂Û
∂B

Ḃ. (47)

The mass balance equation is given by
ρ̇ + ρu̇i,i = 0. (48)

This can equivalently be written as
ρ̇

ρ
= γ̇ijδij = ε̇v. (49)

Now, substituting (47) and (49) back into (46), we obtain:

D = τij γ̇ij + µij κ̇ij −
(

∂Û
∂γe

ij

γ̇e
ij +

∂Û
∂κe

ij

κ̇e
ij +

∂Û
∂ρ

ρ̇ +
∂Û
∂B

Ḃ − U γ̇ijδij
)

≥ 0. (50)

Then, using the fact that ρ̇ = ργ̇ijδij , and substituting (14) and (15) into (50), we get

D = τij(γ̇
e
ij + γ̇p

ij) + µij(κ̇
e
ij + κ̇p

ij) −
(

∂Û
∂γe

ij

γ̇e
ij +

∂Û
∂κe

ij

κ̇e
ij +

∂Û
∂ρ

ρ(γ̇e
ij + γ̇p

ij)δij +
∂Û
∂B

Ḃ − U(γ̇e
ij + γ̇p

ij)δij

)
≥ 0,

=

τij −
∂Û
∂γe

ij

−
(
ρ
∂Û
∂ρ

− U
)
δij

 γ̇e
ij +

(
µij −

∂Û
∂κe

ij

)
κ̇e
ij +

τij −
(
ρ
∂Û
∂ρ

− U
)
δij

 γ̇p
ij

+ µij κ̇
p
ij −

∂Û
∂B

Ḃ ≥ 0. (51)

(51) must hold true for arbitrary values of γ̇e
ij , κ̇

e
ij , γ̇

p
ij , κ̇

p
ij and Ḃ. As purely elastic processes with γ̇p

ij , κ̇
p
ij and Ḃ all

equal to zero must not dissipate energy, we conclude the terms inside the brackets multiplying γ̇e
ij and κ̇e

ij must be
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identically zero so that the relation always holds. We hence define

τeij =
∂Û
∂γe

ij

, (52)

η =
∂Û
∂ρ

, (53)

pt = ρη − U , (54)

τij = τeij + ptδij , (55)

µij =
∂Û
∂κe

ij

, (56)

EB = − ∂Û
∂B

, (57)

where we will call τeij the elastic stress, η is the chemical potential, pt is a thermodynamic pressure, and EB is the
breakage energy. The couple stresses and breakage energy are standard for Cosserat Breakage Mechanics, but the
more refined treatment of the thermodynamics demands consideration of the chemical potential and thermodynamic
pressure to correctly obtain the stresses. However, we note that in typical experimental conditions for dry granular
media the thermodynamic pressure pt is negligible. Then, the dissipation is given by what remains after removing the
parts acting on the elastic rates:

D = τeij γ̇
p
ij + µij κ̇

p
ij + EBḂ ≥ 0. (58)

Now, we need to obtain a time-evolution law for the solid fraction. Re-arranging (16) and applying the time derivative,
we get

ρ̇ = ϕ̇ρs + ϕρ̇s. (59)

Then, after using our constitutive assumption (41), we have the total density rate

ρ̇ = ρsϕ̇ + ϕρsχε̇
e
v, (60)

which can be equated with the time rate of the density given by rearranging (49) and substituting in (16):

ρsϕ̇ + ϕρsχε̇
e
v = ϕρsε̇v,

ϕ̇ = ϕε̇v − ϕχε̇ev,

= ϕ(ε̇ev + ε̇pv) − ϕχε̇ev,

= ϕ
[
(1 − χ)ε̇ev + ε̇pv

]
, (61)

which recovers the expression given in Alaei et al. (2021). This also allows us to attribute elastic and plastic components
to the rate of the solid fraction:

ϕ̇e = ϕ(1 − χ)ε̇ev, (62)

ϕ̇p = ϕε̇pv. (63)

Now, we return to the dissipation expression given in (58) and rearrange it

d = τeij γ̇
p
ij + µij κ̇

p
ij + EBḂ ≥ 0,

=
(
peδij + seij

)(1

3
ε̇pvδij + ėpij

)
+

(
1

3
µkkδij + mij

)(
1

3
κ̇p
kk + żpij

)
+ EBḂ ≥ 0,

= peε̇pv + seij ė
p
ij + mij ż

p
ij + EBḂ ≥ 0,

=
pe

ϕ
ϕ̇p + seij ė

p
ij + mij ż

p
ij + EBḂ ≥ 0,

=
pe

ϕ
ϕ̇p + qγ̇p

s + EBḂ ≥ 0, (64)

where to pass from the first line to the second line we expanded the stress and couple-stress terms into their trace
and deviatoric parts, to pass from the second line to the third we applied our assumption that the trace parts of the
couple-stress do no work (nor store any energy), from the third to the fourth we used (63), and from the fourth to the
fifth we used the fact that the weighting factors in our invariants are those for which the equality qγ̇p

s = sij ė
p
ij +mij ż

p
ij

holds (Collins-Craft, 2019). Now, substituting in the flow rules (30), (31) and (32) we obtain:

0 ≤pe

ϕ
· λ
(√

EB

Ec
(1 −B) − ζχ

)
2ϕ(1 −B)

pe

√
EB

Ec
sin2(ω) + λ

2q2

(Mpe + ϕ(1 −B)c)2

+ EBλ

〈√
EB

Ec
(1 −B) − ζχ

〉
2(1 −B)√

EBEc

cos2(ω). (65)
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We have that the parameters Ec, ζ, c are all positive, the variables ϕ,B,EB likewise, the function M0 is positive for all
admissible values which in turn guarantees that M is also positive, 0 ≤ ω ≤ π/2 and λ is non-negative. We consider
only the case of positive pe in this model, as tensile failure is governed by different physics (macroscopic cracking) that
requires dramatically different models to address. In combination with the Macaulay brackets all these restrictions on
the values of the variables guarantee that the third term is non-negative. The second term is composed of a ratio of two
squared terms and thus is straightforwardly never negative. In the case of F ≥ 0, the first term is also straightforwardly
non-negative given our restrictions on the variable values. For F < 0, the analysis is slightly more complicated. We
return to (29) and rearrange it in terms of q2 and F to obtain q2 = (1 − F 2)(Mpe + ϕ(1 − B)c)2. Substituting this
back in to (65), cancelling out the common factors and suppressing the third term as we have assumed F < 0, we have

(1 −B)

√
EB

Ec
sin2(ω)F + 1 − F 2 ≥ 0. (66)

As we have assumed F < 0 we also have ω = π/2 and hence sin2(ω) = 1, so we can remove it from the equation. We
recall also that the value of

√
EB/Ec(1 − B) is conditioned by our choice of F , namely

√
EB/Ec(1 − B) = F + ζχ.

Substituting this relationship back in to (66) we have

(F + ζχ)F + 1 − F 2 ≥ 0,

F 2 + ζχF + 1 − F 2 ≥ 0,

1 + ζχF ≥ 0. (67)

We see that this inequality is respected for all admissible values (ζ ∈ [0, 1], χ ∈ [0, 1], F ∈ [−1, 0)) coherent with
our assumption of F < 0. This guarantees thermodynamic admissibility for −1 ≤ F < 0, and in combination with
the demonstrations above for F ≥ 0 we have demonstrated that the dissipation relationship (65) is respected for all
admissible values of the variables.

A.2 Plastic multiplier

In order to (analytically) close the model, the plastic multiplier λ must be calculated. This is achieved by enforcing
the consistency condition i.e. y = ẏ = 0 for continued inelastic loading. We exploit automatic differentiation to obtain
the quantities ∂y

∂γe
kl
, ∂y
∂κe

kl
, ∂y
∂ρ ,

∂y
∂ϕ ,

∂y
∂B , which propagates the derivatives through the system using the chain rule. Hence,

we obtain in symbolic form

λ =

(
∂y
∂γe

kl
+ ∂y

∂ρ
∂ρ
∂γ̇kl

+ ∂y
∂ϕ

∂ϕ̇e

∂ε̇ev

∂ε̇ev
∂γ̇e

kl

)
γ̇kl + ∂y

∂κe
kl
κ̇kl

∂y
∂γe

kl
γp
kl + ∂y

∂κe
kl
κp
kl + ∂y

∂ϕ

(
∂ϕ̇e

∂ε̇ev

∂ε̇ev
∂γ̇e

kl
γp
kl − ϕp

)
− ∂y

∂BB
, (68)

where by B, ϕp, γp
kl, and κp

kl we mean the non-λ parts of the flow rules (30), (31), (36) and (37).

A.3 Incremental constitutive response

While the model is closed by calculating λ, it is convenient to write an expression for the incremental constitutive
response, taking into account the appropriate cross-couplings between stresses and couple-stresses with the strain and
curvature rates. We make a linear decomposition of λ:

λ = λγ
klγ̇kl + λκ

klκ̇kl. (69)

By differentiating the stress and couple-stress with respect to time, using (69) and inserting the appropriate flow rules,
we may write the incremental constitutive relationship under continued plastic loading as[

τ̇ij
µ̇ij

]
=

[
Eep

ijkl F ep
ijkl

Kep
ijkl Mep

ijkl

] [
γ̇kl
κ̇kl

]
, (70)

where the continuum incremental elastoplastic stiffness matrices are given by

Eep
ijkl =

∂τij
∂γe

kl

+
∂τij
∂ρ

∂ρ̇

∂γ̇kl
−
(
∂τij
∂γe

kl

γp
kl +

∂τij
∂κe

kl

κp
kl −

∂τij
∂B

B

)
λγ
kl, (71)

F ep
ijkl =

∂τij
∂κe

kl

−
(
∂τij
∂γe

kl

γp
kl +

∂τij
∂κe

kl

κp
kl −

∂τij
∂B

B

)
λκ
kl, (72)

Kep
ijkl =

∂µij

∂γe
kl

+
∂µij

∂ρ

∂ρ̇

∂γ̇kl
−
(
∂µij

∂γe
kl

γp
kl +

∂µij

∂κe
kl

κp
kl −

∂µij

∂B
B

)
λγ
kl, (73)

Mep
ijkl =

∂µij

∂κe
kl

−
(
∂µij

∂γe
kl

γp
kl +

∂µij

∂κe
kl

κp
kl −

∂µij

∂B
B

)
λκ
kl. (74)
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We emphasise here that the stress that is differentiated with respect to the state variables is the total stress, inclusive
of the thermodynamic pressure, and we once again exploit automatic differentiation to obtain the necessary quantities.

A.4 Permeability evolution

As in this work, we are interested in the effect of changes in the microstructure on the global properties of the fault, we
use the microstructural information to observe the changes in the permeability of the fault material as it evolves. It is
well-established in the literature that the permeability plays a key role in controlling the behaviour of the fault, due to
the tight coupling between hydraulic and mechanical effects (Rice, 2006; Rattez, 2017; Rattez et al., 2018a,b,c; Stathas
and Stefanou, 2023). In general, we expect that increases in the solid fraction will in turn decrease the permeability
of the system (and vice versa) in a nonlinear way, as not only will the amount of space available for the fluid to flow
through change, but the tortuosity will as well. Similarly, we expect that as the grains break, the permeability should
reduce due to the increase in tortuosity of the sample. Following Nguyen and Einav (2009) (who in turn follow Matyka
et al. (2008)) in developing a modified Kozeny–Carman equation, we suppose a tortuosity function that depends on
the solid fraction T (ϕ) ∝ (1 − ϕ)−5. Then, for an initial permeability k0 associated with the initial solid fraction ϕ0,
the ratio of the current permeability k to the original permeability is given by

R =
k

k0
=

(1 − ϕ)3T0
2dH

2

(1 − ϕ0)3T 2dH0
2 . (75)

B Determining the localisation width in finite element simulations

While the finite element simulations return localisation widths that are visually clear, in order to obtain a quantitative
measure, we must conduct a fitting process. In order to maintain coherence with the assumption of the linear stability
analysis, we choose to fit a cosine curve to the localisation, fitting on the value of B and the value of γp

21. We choose
these two values as γp

21 is coherent with all plasticity models on which localisation analysis can be conducted, while
B gives an indication of the shear band width available only to models belonging to the Breakage Mechanics family.
The best-fit cosine is re-found at each time step.

For a given time step, we first set c, a vertical shift parameter to be the value of B or |γ̇21| at the upper bound-
ary of the system at that time step, so the function is able to match the values outside of the shear band. Then, we
specify the fitting function:

ẑ =

{
(A− c) cos

(
2πx
Λ

)
+ c if

∣∣ 2πx
Λ

∣∣ ≤ π
2 ,

c if
∣∣ 2πx

Λ

∣∣ > π
2 ,

(76)

where ẑ is our variable of interest, A is the amplitude parameter and Λ is the wavelength. This function fits a half-
wavelength over the localisation, with the height controlled by A and the width controlled by Λ.

At each time step, we then conduct an optimisation using NLopt (Johnson, 2007), in particular the COBYLA al-
gorithm (Powell, 1994, 1998), to find the values of the parameters that minimise the least-squares difference between
the values of the variable predicted by the fitting function and the values of the variables that were generated by the
finite element simulation. We initialise the parameters with an initial guess of {A,Λ} = {arg max

x∈V
(ẑ, t), 5.0} where t

is the time at the current time step. We apply lower bounds of {Alower,Λlower} = {0.75 × arg max
x∈V

(ẑ, t), 0.0001} and

upper bounds of {Aupper,Λupper} = {1.5 × arg max
x∈V

(ẑ, t), 100.0}. We only conduct the fitting if the any of the points

are on the yield surface, as measured by arg max
x∈V

(y, t) ≥ −1 × 10−6, where y is the value of the yield function. We

show a representative comparison of the fitted curves in Figure 21.
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Figure 21: Representative best-fits using a cosine fitting function over the values generated by the simulation of
constant volume shearing with p0 = 200 MPa and χ0 = 0.5, taken at ∆γ21 = 0.02. (a) The distribution of generated
and fitted values of B over the spatial dimension x, and (b) the distribution of generated and fitted values of γp

21 over
the spatial dimension x.

We can see that the shape of the localisation generated by the finite element simulation does not perfectly correspond
to a cosine curve (nor is it perfectly centred within the simulation) but it is also not dramatically different and the
cosine function satisfactorily captures the width of the shear band, which is the key requirement of the method. The
quantitative value of the shear band width is obtained by dividing Λ by two at each time step. In order to obtain the
initial shear band width, we find the time step at which the fitting parameters are non-zero, and take the values from
two time steps after that point, in order to allow the localisation to better reflect the material properties, rather than
the initial imperfection.
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the Grain Scale”. In: Géotechnique 67.11, pp. 953–967. issn: 0016-8505. doi: 10.1680/jgeot.16.p.181.

— (2018). “Breakage Mechanics for Granular Materials in Surface-Reactive Environments”. In: Journal of the Mech-
anics and Physics of Solids 112, pp. 89–108. issn: 00225096. doi: 10.1016/j.jmps.2017.11.008.

41

https://doi.org/10.1016/j.tecto.2014.05.014
https://doi.org/10.1029/2003JB002942
https://doi.org/10.1029/2003JB002942
https://doi.org/10.1002/nag.1610120404
https://doi.org/10.1201/9781482269383
https://doi.org/10.1007/978-3-319-95156-0
http://link.springer.com/10.1007/978-3-319-95156-0
https://doi.org/10.1016/j.jmps.2010.06.010
https://doi.org/10.1680/geolett.12.00063
https://doi.org/10.1680/geolett.12.00063
https://doi.org/10.1080/17486025.2019.1587178
https://doi.org/10.1016/j.jmps.2018.04.007
https://doi.org/10.1016/j.jmps.2018.04.007
https://doi.org/10.1016/S0191-8141(02)00014-7
https://doi.org/10.1007/s11440-019-00904-9
https://doi.org/10.1007/s11440-019-00904-9
https://doi.org/10.1016/S0020-7683(00)00337-1
https://doi.org/10.1680/jgeot.16.p.181
https://doi.org/10.1016/j.jmps.2017.11.008

	Introduction
	Cosserat Breakage Mechanics formalism
	Breakage state variable
	Strain and curvature rates
	Solid fraction state variable
	Stresses and couple-stresses
	Equilibrium and boundary conditions

	Constitutive model
	Parametric study
	Calibration
	Comparison with the drained triaxial tests of Klein2001
	Simulations and stability analysis of shear tests
	Sensitivity to 
	Sensitivity to p

	Finite element simulations
	Comparison of band thickness predictions from linear stability analyses and finite element simulations
	Permeability reduction

	Discussion
	Physical accuracy of the model
	Discrepancies between the predictions of the linear stability analysis and the finite element simulations
	Permeability changes in real rocks
	Comparison of the new and original models

	Conclusion
	Model derivation
	Thermodynamic admissibility
	Plastic multiplier
	Incremental constitutive response
	Permeability evolution

	Determining the localisation width in finite element simulations

