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1 Introduction

This supporting information contains the details of the linear stability analysis and the numerical solution of the
material model used in §4.3 of the main article, as well as the details of the consistent elastoplastic tangent operator
and the finite element implementation used in §4.4 of the main article. Further figures showing the trajectory of some
variables of interest from those simulations are also contained within.

2 Linear stability analysis

In order to study the localisation behaviour of the model, we conduct a series of linear stability analyses by assuming
that there is a homogeneous solution obeying the governing equations of the system, and then performing a perturbation
about that solution. The kinematic fields may be written as

ui(xj , t) = u0i (xj , t) + ũi(xj , t), (S.1)

ωc
i (xj , t) = ωc0

i (xj , t) + ω̃c
i (xj , t), (S.2)

where the 0 superscript indicates the homogeneous solution and tilde the perturbation of the fields. In order to lin-
earise the system, we assume that the perturbations follow the incremental constitutive relationship in (70).

Recalling (25), the momentum balance equations of the Cosserat continuum are given by

τij,j − fi − ρüi = 0, (S.3)

µij,j − ϵijkτjk − bi − Iω̈i = 0, (S.4)

where ρ is the mass density and I is the rotational moment of inertia of the RVE, which we have assumed is isotropic.
As we assume the density of the grains remains constant, but the solid fraction of the RVE can change, the expression
for the density is

ρ = ϕρs, (S.5)

where ρs is the mass density of the grains (Vardoulakis and Sulem, 1995). We apply this expression for the density
of the RVE to the expression for I that was derived via an inertial upscaling in Collins-Craft et al. (2020), which we
adopt (in the three dimensional case) here:

I =
π

60
ϕ(1− θIB)ρsdMax

5. (S.6)

The governing equations (S.3) and (S.4) are satisfied by the full kinematic fields, as well as the homogeneous solution.
Thus, by subtraction they must also be satisfied by the perturbation terms. We assume the body forces do not
experience any perturbation and so do not appear in the perturbative part of the balance equations. Hence, we may
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insert the incremental constitutive relationships (70) and the definitions of the strain and curvature rates (10) and
(11) into (S.3) and (S.4) to obtain

Eep
ijkl

(
ũk,lj + ϵkloω̃

c
o,j

)
+ F ep

ijklω̃
c
k,lj − ρ¨̃ui = 0, (S.7)

Kep
ijkl

(
ũk,lj + ϵkloω̃

c
o,j

)
+Mep

ijklω̃
c
k,lj − ϵijk

(
Eep

jklo

(
ũl,o + ϵlorω̃

c
r

)
+ F ep

jkloω̃
c
l,o

)
− Iij ¨̃ω

c
j = 0. (S.8)

This results in a set of 6 equations with 6 unknowns, ũj and ω̃c
j , that admit solutions of the form:

U⋆
i (xj , t) = Ūie

st+ 2πi
Λ xj ñj , (S.9)

Ω⋆
i (xj , t) = Ω̄ie

st+ 2πi
Λ xj ñj , (S.10)

where Ūi and Ω̄i are the components of the vectors of coefficients, s is the (potentially complex-valued) Lyapunov
exponent, i2 = −1 defines the imaginary unit, Λ is the perturbation wavelength, ñj the components of the polarisa-
tion vector and U⋆

i (xj , t) and Ω⋆
i (xj , t) are the components of the vectors that contain the unknown perturbation fields.

We may insert (S.9) and (S.10) into (S.7) and (S.8) to obtain two sets of equations that may be re-written in terms
of a matrix acting on the coefficient vectors Ūi and Ω̄i. The existence of non-trivial solutions implies that the matrix
is singular. We take the determinant of this matrix and write the resultant expression as a polynomial in s. For a
given s that is a root of this polynomial, if ℜ(s) < 0, the homogeneous system is stable as the perturbation decreases
with time. If ℜ(s) > 0, the perturbation grows in time and localisation takes place. Hence, a bifurcation from the
unstable homogeneous system to a stable perturbation-dominated system occurs. If ℜ(s) > 0 and ℑ(s) ̸= 0, travelling
instabilities may appear (see Stathas and Stefanou (2023)). If ℜ(s) = 0, we cannot draw any conclusions.

Given a particular set of state variables describing the system, we search over a range of wavelengths Λ and ori-
entations ñj to find the largest value of real positive s, corresponding to the fastest growing perturbation. The
wavelength at which this occurs is denoted ΛMax, which we interpret as twice the width of the shear band. As the
polynomial in s results in terms only in powers divisible by two (s12, s10, . . . ), we simplify the problem slightly by
substituting s̄ = s2 into the polynomial. This has the benefit of substantially stabilising the numerical root-finding
scheme that we use. As in this application we only consider horizontal bands, we can simplify the system further
by setting {ñ1, ñ2, ñ3} = {1, 0, 0}. Then, we have a polynomial in s̄ we denote P(s̄,Λ) where Λ is a parameter. De-
noting by roots(P(s̄,Λ)) the set of (possibly complex-valued) roots of the polynomial, we are able to write a formal
optimisation problem:

maximise
Λ

sup(ℜ(roots(P(s̄,Λ)))),

subject to Λmin ≤ Λ ≤ Λlimit,
(S.11)

where Λmin is the smallest wavelength we allow to be searched, and Λlimit is the largest wavelength we allow to be
searched. We set these values respectively to dmin and 200 mm. Numerically, we perform the optimisation using the
NLopt software package (Johnson, 2007) via its implementation in the Julia programming language (Bezanson et al.,
2017) using the gradient-free Nelder–Mead algorithm (Nelder and Mead, 1965), where the initial guess of the algorithm
is determined by the result of the previous time step. For the initial time step, we start with a guess of Λlimit/2. We
allow the algorithm to make 25 iterations and apply a tolerance in the optimisation variables of 1× 10−5. For a given
value of Λ provided by the optimisation solver, the roots are determined by PolynomialRoots.jl which implements the
root-finding algorithm developed by Skowron and Gould (2012). The largest real part of the set of roots returned by
this package is returned to the optimiser as the value of the objective function to maximise.

Finally, we emphasise that this analysis is only strictly valid up to and including the moment of localisation, as
we are assuming a bifurcation from a homogeneous state, and once the shear band appears this is no longer the case.
However, the results can be taken as indicative of the expected future behaviour of the system, as the shear band
system is still relatively close to the homogeneous system in the state-space.

A possible alternative method of determining localisation is to form the “acoustic tensor” and search for the ori-
entation at which its determinant is zero, however this approach gives no information about the wavelength of the
perturbation, and so we prefer using the linear stability analysis to determine whether (and how) a system has localised.
However, using the orientation vector ñj that we have imposed, we can still form the acoustic tensor by

Γik = ñjEijklñl, (S.12)

and then obtain the eigenvector gi of this tensor that is associated with the (in principle) zero eigenvalue. However,
given the extra information used in the linear stability analysis (momentum, Cosserat effects), the orientation we use
is not necessarily exactly the same orientation we would have achieved by varying ñj to obtain |Γik| = 0, and as such
the possibility remains open that the acoustic tensor is not singular at the point of localisation. As such, we consider
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the eigenvector associated with the eigenvalue with the norm closest to zero. The inner product of this eigenvector gi
with ñi characterises the nature of the predicted deformation band, with ñigi = 1 a pure compaction band, ñigi = 0 a
pure shear band, ñigi = −1 a pure dilation band, −1 < ñigi < 0 a dilating shear band and 0 < ñigi < 1 a compacting
shear band.

3 Initialising the model

For a given system that we wish to simulate, we require a method that allows us to obtain the set of initial state
variables. Given an initial isotropic confining stress p0 and an assumed value of the breakage index B0 we create an
optimisation where we vary the elastic strain γe11, enforcing that γe22 = γe33 = γe11, which allows us to calculate εev.
Then, we update the density by ρ = ρ⋆sϕ0 exp(ε

e
v). This is a sufficient subset of the state variables to calculate τij . We

then create a residual by
Residual =

[
τij − p0δij

]
, (S.13)

and use Johnson (2007) with the Nelder–Mead algorithm (Nelder and Mead, 1965) to minimise the L2 norm of the
residual. The minimiser γe11

⋆ is then used to calculate the corresponding initial density. We can then choose to either
update the solid fraction (using the method detailed in (S.17) and (S.18), where ϕk = ϕ0 in the unstressed initial
condition and ϕtrial is equal to the updated ϕ0), or to impose a ϕ0 coherent with a target relative solid density for
sensitivity analysis. This completes the initialisation of the system, and all other variables (η,EB , y, . . . ) can now be
calculated from the set of state variables.

4 Numerical method

While the plastic multiplier is in-principle calculable analytically (and indeed we ultimately do so to calculate the terms
in (71), (72), (73), (74)), in practice it is quite onerous, and doing so renders implicit numerical methods unworkably
slow. In the event that some entries are under stress control, the model must strictly be solved implicitly as explicit
methods will fail to respect the stress rate conditions. We thus make use of a predictor-corrector method, where the
value of λ is determined numerically to be that which best satisfies a root-finding problem.

We start by considering a time interval t ∈ [t0, tMax], which we discretise by the sequence {t0, t1, . . . , tk, . . . , tMax},
where the terms are indexed by k and the difference between subsequent terms of the sequence is given by (∆t)k+1.
Then, we can discretise the underlying translational and rotational velocities by u̇k ≈ u̇(tk) and ω̇ck ≈ ω̇c(tk). The
discretisation of all the other terms follows straightforwardly. We apply an implicit Euler time-stepping scheme, that
is ∫ tk+1

tk
x(t) dt ≈ (∆t)k+1xk+1, (S.14)

for some arbitrary quantity x. We have chosen the implicit Euler scheme due to its numerical stability, allow-
ing us to use rather large time steps to integrate the system. We consider the set of augmented state variables
{γeijk, κeijk, ρk, ϕk, Bk, λk} (that is to say we add the plastic multiplier to the vector of the true state variables), with all

other quantities evaluated at this time using these variables also denoted with a k superscript (e.g. τij
k, χk, yk, . . . ).

We consider the discrete-in-time evolution of the state variables by dividing the problem at each time step into two
stages, an elastic predictor and a plastic corrector. First, we treat the case where all the strain and curvature rates
are known (and the corresponding stress and couple-stress rates are unknown), then consider the modifications for
the case where some of the stress and couple-stress rates are known (and the corresponding strain and curvature rates
are unknown). For convenience, we will label the two cases fully strain-driven and partially strain-driven respectively.
We then detail a specific algorithm that is applied only in the case of drained triaxial compression.

4.1 Fully strain-driven

In this case, all the elements of γ̇ij
k+1 and κ̇ij

k+1 are known, and correspondingly all the elements of τ̇ij
k+1 and µ̇ij

k+1

are unknown. We initially assume that the step is elastic (i.e. λtrial = 0 and Btrial = Bk) and the strain and curvature
rates are accumulated to the elastic strains and curvatures to obtain the trial values γeij

trial and κeij
trial.

Considering the density evolution equation given in (49), by our use of a fully implicit method we have a known
and constant value of ε̇k+1

v , making the equation a straightforward first order linear ordinary differential equation with
constant coefficient over the time step, solved by an equation of the form ρ(t) = C exp(ε̇k+1

v t). We have at the start
of the time step at tk that ρ(t) = ρk and hence C = ρk/ exp(ε̇k+1

v tk). Then, to get the trial density at the end of the
time step we straightforwardly have

ρtrial =
ρk exp(ε̇k+1

v tk+1)

exp(ε̇k+1
v tk)

= ρk exp(∆εk+1
v ). (S.15)

3



It should be noted that in the fully strain-driven case, the trial density is identical to the final density, as the value is
insensitive to how the total strain is split between elastic and plastic parts, nor does it depend on the breakage or the
solid fraction.

Considering the elastic solid fraction evolution equation given in (62), expanding χ by its definition in (17), not-
ing that as Btrial = Bk the values of ϕmin and ϕMax for the trial state are taken at tk and again taking the volumetric
strain rate exclusively at tk+1 we have

ϕ̇ = ϕ

(
1− ϕ− ϕkmin

ϕkMax − ϕkmin

)
ε̇k+1
v = − ε̇k+1

v

ϕkMax − ϕkmin

ϕ2 +

(
1 +

ϕkmin

ϕkMax − ϕkmin

)
ε̇k+1
v ϕ, (S.16)

which is a Bernoulli differential equation with constant coefficients over the time step. We have two possible analytical
solution cases which can be straightforwardly obtained by separation of variables. The first case is when the deforma-
tion is isochoric (i.e. ε̇k+1

v = 0) in which case we trivially have ϕtrial = ϕk. The second case is when the deformation is
non-isochoric and requires some manipulation. Labelling the term that multiplies ϕ2 in (S.16) as Aε̇k+1

v and the term
that multiplies ϕ as Bε̇k+1

v , we have

C =
ϕk

Aϕk + B
, (S.17)

ϕtrial =
CB exp(B∆εk+1

v )

1− AC exp(B∆ε̇k+1
v )

. (S.18)

Then, ytrial is evaluated, and if it is less than zero, the trial values are accepted as the values at tk+1 and we set
{γeijk+1, κeij

k+1, ρk+1, ϕk+1, Bk+1, λk+1} = {γeij trial, κeij trial, ρtrial, ϕtrial, Bk, 0} and the system advances to the next time
step.

In the event that ytrial ≥ 0, plastic correction is applied by means of a classical return-mapping algorithm where the
total strain is held constant within the correction step. We denote the internal iterations of the correction step with the
(n+ 1) superscript, and we set the initial internal iterate of the augmented state variables {γeij(1), κeij(1), ρ(1), ϕ(1), B(1), λ(1)}
to {γeij trial, κeij trial, ρtrial, ϕtrial, Bk, 1}. The initial iterate value of λ(1) = 1 is chosen to aid the convergence of the system.
Then, the system of equations to be solved is

γeij
(n+1) − γeij

trial + (∆t)k+1λ(n+1)γpij
(n+1)

κeij
(n+1) − κeij

trial + (∆t)k+1λ(n+1)κpij
(n+1)

ρ(n+1) − ρtrial

ϕ(n+1) − ϕtrial − (∆t)k+1λ(n+1)χ(n+1)ϕp
(n+1)

B(n+1) −Btrial − (∆t)k+1λ(n+1)B
(n+1)

y(n+1)


=


0ij
0ij
0
0
0
0

 . (S.19)

To solve this system we use a Newton–Raphson root finding method (we use the one implemented in the package
NonlinearSolve.jl (Pal et al., 2024) with gradients calculated using forward-mode automatic differentiation through
the package ForwardDiff.jl (Revels et al., 2016)). In the event that the solver indicates successful convergence, the state
variables are updated to the values of the internal iterates that converged i.e. {γeijk+1, κeij

k+1, ρk+1, ϕk+1, Bk+1, λk+1} =

{γeij(n+1), κeij
(n+1), ρ(n+1), ϕ(n+1), B(n+1), λ(n+1)}.

The plastic corrector resembles the closest-point projection algorithm, however as Breakage Mechanics models —
in common with Damage Mechanics models — do not generally possess the requisite convexity, we do not have guar-
antees of convergence to a unique solution. In practice the method is known to work for Damage Mechanics, albeit
with a degradation in performance as damage (or breakage in our case) increases, which can be mitigated with better
initial guesses (smaller time steps in our case), augmenting the Newton–Raphson method with line search or using a
“projected stress” method (De Souza Neto et al., 1994, 2008). For our single element simulations in §4.3 of the main
article we find that constant time steps are perfectly adequate, but for our finite element simulations in §4.4 of the
main article we allow adaptive time-stepping where required to ensure convergence. Typically, the system requires
small time steps during localisation as the solution is non-unique.

4.2 Partially strain-driven

In this case, some of the elements of γ̇ij
k+1 and κ̇ij

k+1 are known and some are unknown, and the corresponding
elements of τ̇ij

k+1 and µ̇ij
k+1 are unknown or known, respectively. For simplicity, we will refer to the entries with

known strain- or curvature-rates as strain-controlled, and those with known stress- or couple-stress-rates as stress-
controlled. We once again make the assumption that the step is elastic (λtrial = 0, Btrial = Bk) and accumulate the
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strain and curvature rates to the elastic strains and curvatures. For the entries that are stress-controlled, and hence
where the corresponding γ̇ij

k+1 or κ̇ij
k+1 entries are unknown, we use the values of the rate entries at tk as an initial

guess. Then, we initialise the guess for the density and the solid fraction by evaluating

ρ(1) = ρk exp
(
εev

(1) − εev
k
)
, (S.20)

ϕ(1) =
C(1)B(1) exp(B(1)(∆t)k+1)

1− A(n+1)C(1) exp(B(1)(∆t)k+1)
. (S.21)

We form a residual by

Residual =

stress-controlled{τij(1) − τij
k − (∆t)k+1τ̇ij

k+1

µij
(1) − µij

k − (∆t)k+1µ̇ij
k+1

 , (S.22)

where the stress-controlled label indicates that the discrete stress rate balance is only evaluated for the stress-controlled
entries, and then we take the L2 norm of the residual. We vary only the unknown entries of the elastic strain and
curvature, recalculating (S.20) and (S.21) at each iteration and subsequently calculating the norm of the residual
until it is below the required tolerance. We once again perform the optimisation using the NLopt software pack-
age (Johnson, 2007) using the gradient-free Nelder–Mead algorithm (Nelder and Mead, 1965). If the solver suc-
cessfully converges, the trial state variables are updated to the values of the internal iterates that converged i.e.
{γeij trial, κeij trial, ρtrial, ϕtrial, Btrial, λtrial} = {γeij(n+1), κeij

(n+1), ρ(n+1), ϕ(n+1), Bk, 0}. Then, ytrial is evaluated, and if it is

less than zero, the trial values are accepted as the values at tk+1 and we set {γeijk+1, κeij
k+1, ρk+1, ϕk+1, Bk+1, λk+1} =

{γeij trial, κeij trial, ρtrial, ϕtrial, Bk, 0}. These values are used to back-calculate the strain and curvature rates for the entries
in which those quantities are unknown, and then the system advances to the next time step.

In the event that ytrial ≥ 0, plastic correction must once again be applied, this time using a modified return-mapping
algorithm similar to that typically used in plane-stress plasticity. In this case, the total strain cannot be held con-
stant within the correction step, as this quantity may need to be varied in order to allow the solver to respect the
stress-controlled conditions. This results in the elastic part of the solid fraction rate needing to be taken into account
during the plastic correction, producing a somewhat more complicated expression. We once again denote the internal
iterations of the correction step with the (n+ 1) superscript, and we set the initial internal iterate of the augmented
state variables {γeij(1), κeij(1), ρ(1), ϕ(1), B(1), λ(1)} to {γeij trial, κeij trial, ρtrial, ϕtrial, Btrial, 1}. Then, the system of equations
to be solved is

strain-controlled

γeij(n+1) − γeij
trial + (∆t)(k+1)λ(n+1)γpij

(n+1)

κeij
(n+1) − κeij

trial + (∆t)(k+1)λ(n+1)κpij
(n+1)

stress-controlled

{
τij

(n+1) − τij
k − (∆t)k+1τ̇ij

k+1

µij
(n+1) − µij

k − (∆t)k+1µ̇ij
k+1

ρ(n+1) − ρk exp

(
εev

(n+1) − εev
k + (∆t)(k+1)λ(n+1)γpv

(n+1)
)

[
1−

(
1− χ(n+1)

)(
εev

(n+1) − εev
k
)]
ϕ(n+1) − ϕk − (∆t)k+1λ(n+1)ϕp

(n+1)

B(n+1) −Btrial − (∆t)(k+1)λ(n+1)B
(n+1)

y(n+1)



=



strain-controlled

{
0ij

0ij

stress-controlled

{
0ij

0ij
0
0
0
0


, (S.23)

where the strain-controlled label indicates that the constant total strain balance is only evaluated for the strain-
controlled entries, the stress-controlled label indicates that the discrete stress rate balance is only evaluated for the
stress-controlled entries, γpv indicates the volumetric part of γpij and the system of equations in solved via the Newton–
Raphson root finding method in NonlinearSolve.jl, again with gradients provided by ForwardDiff.jl. In the event that
the solver indicates successful convergence, the state variables are updated to the values of the internal iterates that
converged i.e. {γeijk+1, κeij

k+1, ρk+1, ϕk+1, Bk+1, λk+1} = {γeij(n+1), κeij
(n+1), ρ(n+1), ϕ(n+1), B(n+1), λ(n+1)}. These values

are used to back-calculate the elastic strain and curvature rates for the stress-controlled entries, and the corresponding
plastic rates can be obtained by evaluating the flow rules using the updated state variables. These two quantities
can then be summed to obtain the total strain and curvature rates for the stress-controlled entries, which are used to
improve the quality of the initial guess at the next time step.

We emphasise that in (S.23), the strains and curvatures in the stress-controlled entries still contribute to the value of

γpij
(n+1)

and κpij
(n+1)

, but do not have to fulfil the strain and curvature balances. Similarly, the strains and curvatures

in the strain-controlled entries still contribute to the value of τij
(n+1) and µij

(n+1), but do not have to fulfil the
stress and couple-stress balances. As an example, for a system where a constant confining stress is applied on the
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τ11 entry, but all other entries are strain-controlled, we must strictly have τ11
(n+1) − τ11

k − ∆tk+1τ̇11
k+1 = 0 but

γe11
(n+1) − γe11

trial + (∆t)(k+1)λ(n+1)γp11
(n+1)

̸= 0 (in general, it may incidentally be equal to zero). Once again, we find
that constant time steps are perfectly adequate for our simulations in §4.3 of the main article.

4.3 Drained triaxial

In the drained triaxial compression loading case, we create a special implementation of the partially strain-driven
algorithm, in order to adjust for the numerical stiffness present in this case. We assume that the (strain-controlled)
axial strain is in entry 11 of the system, while the constant confining stresses are applied on the 22 and 33 entries. We
further assume that no curvature rates are being applied to the system, and so we may ignore all curvatures for our
purposes here. As always, we start with the assumption that the step is elastic (λtrial = 0, Btrial = Bk) and accumulate
the axial strain rate to the corresponding elastic strain. We use the values of the rate entries at tk as an initial guess
for the γ̇22/33

k+1 entries. Similarly to the partially strain-driven case, we initialise our guesses for the density and the
solid fraction using (S.20) and (S.21). Now, we form a residual by

Residual =

[
τ22

(1) − τ22
k − (∆t)k+1τ̇22

k+1

ρ(1) − ρk exp(∆εev
(1))

]
, (S.24)

and then taking the L2 norm. We vary γe22 (enforcing that γe33 = γe22 within the code) and ρ in order to minimise the
norm of the residual (recalculating (S.21) at each iteration), once again using NLopt’s (Johnson, 2007) implementation
of the Nelder–Mead algorithm. If the solver successfully converges, the trial state variables are updated to the values of
the internal iterates that converged i.e. {γe11trial, γe22trial, ρtrial, ϕtrial, Btrial, λtrial} = {γe11(n+1), γe22

(n+1), ρ(n+1), ϕ(n+1), Bk, 0}.
Then, ytrial is evaluated, and if it is less than zero, the trial values are accepted as the values at tk+1 and we
set {γe11k+1, γe22

k+1, ρk+1, ϕk+1, Bk+1, λk+1} = {γe11trial, γe22trial, ρtrial, ϕtrial, Bk, 0}. The value of γe22
k+1 is used to back-

calculate the strain rates for the 22/33 entries, and then the system advances to the next time step.

In the event that ytrial ≥ 0, plastic correction must once again be applied, this time using a specialised return-mapping
algorithm. Like for the generic stress-controlled case, the total strain cannot be held constant within the correction
step, as this quantity may need to be varied in order to allow the solver to respect the stress-controlled conditions.
Denoting once again the internal iterations of the correction step with the (n+ 1) superscript, and we set the initial
internal iterate of the reduced state variables {γe11(1), γe22(1), ρ(1), ϕ(1), B(1), λ(1)} to {γe11trial, γe22trial, ρtrial, ϕtrial, Btrial, 1}.
Then, the system of equations to be solved is

γe11
(n+1) − γe11

trial + (∆t)(k+1)λ(n+1)γp11
(n+1)

τ22
(n+1) − τ22

k − (∆t)k+1τ̇22
k+1

ρ(n+1) − ρk exp

(
εev

(n+1) − εev
k + (∆t)(k+1)λ(n+1)γpv

(n+1)
)

[
1−

(
1− χ(n+1)

)(
εev

(n+1) − εev
k
)]
ϕ(n+1) − ϕk − (∆t)k+1λ(n+1)ϕp

(n+1)

B(n+1) −Btrial − (∆t)(k+1)λ(n+1)B
(n+1)

y(n+1)


=


0
0
0
0
0
0

 , (S.25)

where γpv indicates the volumetric part of γpij and the system of equations is solved via the Newton–Raphson root finding
method in NonlinearSolve.jl, this time with the gradients provided by the slower, but more robust, finite difference
method. In the event that the solver indicates successful convergence, the state variables are updated to the values
of the internal iterates that converged i.e. {γe11k+1, γe22

k+1, ρk+1, ϕk+1, Bk+1, λk+1} = {γe11(n+1), γe22
(n+1), ρ(n+1), ϕ(n+1),

B(n+1), λ(n+1)}. The values of γe22
k+1 used to back-calculate the elastic strain rates for the 22 and 33 entries, and the

corresponding plastic rates can be obtained by evaluating the flow rules using the updated state variables. These two
quantities can then be summed to obtain the total strain rates for the 22 and 33 entries, which are used to improve
the quality of the initial guess at the next time step.

4.4 Consistent elastoplastic tangent operator

For our finite element implementation, we require the consistent elastoplastic tangent operator that will be assembled
to create the global stiffness matrix that is in turn used to satisfy global equilibrium of the system. As the (Lagrangian)
finite element implementation is displacement-based, the solver varies the nodal displacements and as a consequence
the strains at each Gauss point are imposed. Hence, the consistent elastoplastic operator is obtained from the fully
strain-driven return-mapping scheme described in §4.1.

To obtain the consistent operator, we first define the incremental (generalised) stress update function using the
compact notation σ̄k+1 where σ includes both the true stresses τ k+1

ij and the couple stresses µk+1
ij , and consider the
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(generalised) strains εk+1 which includes the strains γk+1
ij and the curvatures κk+1

ij . Here, σ and ε are distinct from
the Cauchy stresses and strains. Then, we can define the incremental stress update function as

σ̄k+1 = σ̄(εetrial, ρtrial, ϕk, Bk), (S.26)

where σ̄k+1 is an implicit function that encapsulates the algorithmic process of applying the trial strains, checking the
yield condition and either returning the generalised stresses directly in the case of elastic loading, or performing the
return-mapping process (S.19) and returning the resulting generalised stresses in the case of plastic loading. Then,
the consistent elastoplastic tangent operator is obtained by differentiation:

Dep =
∂σ̄k+1

∂εetrial
. (S.27)

In the case where loading is purely elastic, the operator is equivalent to the continuum elastic stiffness matrices. In
the case of plastic loading, the consistent operator differs slightly from the continuum incremental elastoplastic tensors
given in (70), (71), (72), (73) and (74), however as the step size ∆t → 0, the consistent operator converges to the
continuum value. In combination with the Newton–Raphson method, the consistent tangent operator allows optimal
convergence during the nonlinear solution of the global finite element balance equations (De Souza Neto et al., 2008).

In our implementation of the operator, we once again obtain our desired expression using automatic differentiation
via ForwardDiff.jl (Revels et al., 2016). It should be noted that as the global finite element solver can pass increments
of strain that are too large and cause the return-mapping process in (S.19) to fail, we implement a check within our
implementation of σ̄k+1 where if NonlinearSolve.jl returns an error code indicating it could not solve (S.19), σ̄k+1

returns the generalised stresses associated with the purely elastic trial state. As this results in an out-of-equilibrium
system, the solver tries again with a different increment of strain until convergence is obtained.

In general, we expect that the structural stiffness matrix will be singular as localisation is occurring. This can
make it very difficult for the solver to converge, even though the consistent tangent operator has optimal convergence
properties (in practice, at a given time step size the solver will cycle between several points until the iteration limit is
achieved and the adaptive time-stepping is activated). In order to mitigate this problem, we allow the option to add
part of the elastic stiffness matrix to the consistent tangent operator. Specifically, we add 10% of the elastic stiffness
matrices to the operator. While this slightly compromises the convergence rate in elasticity and in homogeneous plas-
ticity (or cases where the localisation is already well-established), it substantially aids convergence during localisation,
with a more-or-less monotonic decrease in the error with internal iterations. This has the effect of speeding up the
overall solution time.

5 Finite element implementation

In order to examine the system at more than one material point (i.e. when our model has a real spatial extent), we
turn to the finite element method. As we do not wish to examine any transitory phenomena such as stress waves, and
our problem is located at sufficient depth that the variation in gravitational forces with depth can be neglected, we
consider the static momentum balance equations of the Cosserat continuum without body forces, namely:

τij,j = 0, (S.28)

µij,j − ϵijkτjk = 0, (S.29)

Labelling the Dirichlet and Neumann boundary conditions as in §2.5 of the main article, the weak form of the balance
equations can be written as

−
∫
V
τijψi,j dV +

∫
∂VN

τij n̄j d∂V = 0, (S.30)

−
∫
V
µijψi,j dV +

∫
∂VN

µij n̄jψi d∂V −
∫
V
ϵijkτjkψi dV = 0, (S.31)

where ψi are test functions. We choose quadratic Lagrangian test functions for the displacement fields and linear
Lagrangian test functions for the micro-rotation fields, as this has been shown to deliver performance that is superior
to both doubly-linear and doubly-quadratic formulations in plane geometries (Providas and Kattis, 2002) and we are
unconcerned with the out-of-plane bending behaviour for which a doubly-quadratic formulation has demonstrated
superiority (Godio et al., 2015). We use full integration, which in the case of our one-dimensional elements amounts
to two Gauss points per element. The system is integrated using the Numerical Geolab framework (Stefanou and
Stathas, 2023), which provides an interface layer on top of the FEniCS finite element framework (Logg et al., 2012;
Alnæs et al., 2015). Numerical Geolab allows us to control the global error tolerance for convergence, the adaptive
time-stepping and the distribution of the materials. The results of the simulation are written to .h5 files indexed by
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.xdmf files on an element-by-element basis (that is the state variables written to file will be the average of the state
variable values at each Gauss point in the element).

For the one dimensional simulations, we use a system with a height of 50 mm so that the initial localisation widths
(on the order of at most 20 mm) avoid any influence from the boundary conditions. In order to ensure that the
initial localisation occurs in the centre of the simulation, we induce an imperfection of 2 mm with the same material
parameters, other than an Ec value set to 95% of the calibrated value. As the imperfection is much smaller than the
predicted localisation size, it does not compromise the predicted width. We utilise 200 elements so that we have a
finely resolved system. Within the material model (i.e. the return-mapping algorithm) we set a numerical tolerance
of 1 × 10−8 on the norm of the residual and allow up to 100 iterations. For the global finite element system, we set
a numerical tolerance for convergence of 1× 10−2 in the L2-norm of the product of the variational Jacobian and the
residual. We allow up to 200 iterations before declaring that the time-step has failed to converge. Numerical Geolab
uses adaptive time-stepping, with the time-step being divided by two if convergence fails. If the time step is not at
the maximum size, and successfully converges five times in a row, the time step size will be doubled (up to the limit
of the maximum time step size). If convergence failures continue and the time step size falls below the minimal value
(1× 10−8), the simulation is terminated. All simulations are assumed to take place over an arbitrary time of 1, as this
is a pseudo-time rather than a real time as the system is rate-independent and integrated quasi-statically. We set the
maximum time step size to 0.005.

6 Simulations of shear tests

Below, we show the evolutions of various quantities of interest beyond those shown in the main article for the shear
tests under constant volume and constant confining stress.

6.1 Sensitivity to χ

Further results of the simulations varying χ0 and ω̄ under constant volume shearing are shown in Figure S.1.
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Figure S.1: The results of simulations of shearing at constant volume with an initial confining stress of 200 MPa,
using the model presented in this paper (χ ∈ {0.0, 0.5, 1.0}) and the model presented in Collins-Craft et al. (2020)
(ω̄ ∈ {0◦, 45◦, 90◦}). (a) The mean stress p against the increment of shear strain ∆γ12, (b) the deviatoric stress
invariant q against the increment of shear strain ∆γ12, (c) the relative solid fraction χ against the increment of shear
strain ∆γ12, and (d) the ratio of the plastic volumetric strain rate and the plastic shear strain rate invariant against
the increment of shear strain ∆γ12. The quantity χ does not exist in the original model, and hence only the new
model is shown in subfigure (c).

Further results of the simulations varying χ and ω̄ under constant confining stress shearing are shown in Figure S.2.
Here we observe that the original model shows a greater initial tendency to plastic volumetric compaction relative to
the plastic shear straining than the new model. For the relative solid fraction variable that is only available within
the new model, we see that it declines for both χ0 = 1 and χ0 = 0.5, with both tending towards a common steady
state (corresponding to the critical state), while the value of χ does not evolve at all for the χ0 = 0 system. This
combination of loading conditions and initial state prevents any breakage occurring, in turn guaranteeing no changes
to χ. We also calculate the ratio of the plastic strain rate invariant terms, a quantity that is often controlled by a
dilatancy parameter. For both models this ratio evolves, tending towards zero, as required for the critical state, but
the original model features a much higher initial value that decreases rapidly.

Further results of the simulations varying χ0 and ω̄ under constant confining stress shearing are shown in Figure S.2.
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Figure S.2: The results of simulations of shearing at constant confining stress of 200 MPa, using the model presented
in this paper (χ ∈ {0.0, 0.5, 1.0}) and the model presented in Collins-Craft et al. (2020) (ω̄ ∈ {0◦, 45◦, 90◦}). (a) The
mean stress p against the increment of shear strain ∆γ12, (b) the deviatoric stress invariant q against the increment of
shear strain ∆γ12, (c) the relative solid fraction χ against the increment of shear strain ∆γ12, and (d) the ratio of the
plastic volumetric strain rate and the plastic shear strain rate invariant against the increment of shear strain ∆γ12.
The quantity χ does not exist in the original model, and hence only the new model is shown in subfigure (c).

In this figure, we observe that notwithstanding a substantial increase in the solid fraction visible in Figure 9, the
relative solid fraction of the system decreases for the χ0 = 0.5 and χ0 = 1.0 systems. Once again the two models
converge towards a similar value of the ratio of plastic volumetric strain rate to plastic deviatoric strain rate, with the
exception of the ω̄ = 90◦ system.

6.2 Sensitivity to p

Further results of the simulations varying p0 under constant volume shearing are shown in Figure S.3.
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Figure S.3: The results of simulations of shearing at constant volume with an initial confining stress of 200 MPa,
using the model presented in this paper and the model presented in Collins-Craft et al. (2020) (both with p0 ∈
{100, 200, 300} MPa). (a) The mean stress p against the increment of shear strain ∆γ12, (b) the deviatoric stress
invariant q against the increment of shear strain ∆γ12, (c) the relative solid fraction χ against the increment of shear
strain ∆γ12, and (d) the ratio of the plastic volumetric strain rate and the plastic shear strain rate invariant against
the increment of shear strain ∆γ12. The quantity χ does not exist in the original model, and hence only the new
model is shown in subfigure (c).

We may observe that the relative solid fraction declines noticeably for all systems, due to the increase in breakage
values while the solid fraction remains almost constant. All systems show a tendency towards compaction, with this
being greater in the old model than the new model, and at higher confining stresses than lower confining stresses. The
tendency of all of the systems to head towards the critical state with no plastic volumetric straining is also clearly
observable.

Further results of the simulations varying p0 under constant confining stress shearing are shown in Figure S.4.
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Figure S.4: The results of simulations of shearing at constant volume with an initial confining stress of 200 MPa,
using the model presented in this paper and the model presented in Collins-Craft et al. (2020) (both with p0 ∈
{100, 200, 300} MPa). (a) The mean stress p against the increment of shear strain ∆γ12, (b) the deviatoric stress
invariant q against the increment of shear strain ∆γ12, (c) the relative solid fraction χ against the increment of shear
strain ∆γ12, and (d) the ratio of the plastic volumetric strain rate and the plastic shear strain rate invariant against
the increment of shear strain ∆γ12. The quantity χ does not exist in the original model, and hence only the new
model is shown in subfigure (c).

We may observe that in the original model, all systems show initial decreases in the value of p followed by increases,
and strong initial compactive tendencies that then move towards a state of pure shear. In the new model, the system
at the lowest initial confining stress demonstrates a continuous slow decline in the value of p and q after the initial
yield value is reached. We can also observe the ratio of plastic volumetric compaction to plastic shearing, where the
value remains very close to zero throughout the simulation for this initial p0, confirming the proximity of the system
to the critical state.

7 State variable trajectories inside and outside the shear band

Further state variable trajectories inside and outside the shear band under both constant volume and constant confining
stress conditions are shown in Figure S.5.
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Figure S.5: The results of simulations of shearing at constant volume and constant confining stress with χ0 = 0.5
and an initial confining stress of 200 MPa, considering points either near the edge of the system or at the centre of
the band. (a) the mean stress p against the increment of (homogeneous) shear strain ∆γ21, (b) the deviatoric stress
invariant q against the increment of (homogeneous) shear strain ∆γ21, (c) the relative solid fraction χ against the
increment of (homogeneous) shear strain ∆γ21, and (d) the ratio of the plastic volumetric strain rate and the plastic
shear strain rate invariant against the increment of (homogeneous) shear strain ∆γ21.

In Figure S.5, p and q show qualitatively similar trajectories inside and outside the band, but the specific values
vary due to the different evolution of the τ22 and τ33 stresses as B and ϕ evolve. We observe that both inside and
outside the band, the constant confining stress systems show declines in the mean stress and spikes in the deviatoric
stress, whereas the constant volume systems feature smooth declines in both. The relative solid fraction under constant
confining stress shows rapid decreases as plasticity occurs, before gradually increasing. This tendency occurs both
within and outside the band. However, the constant volume system features a steady decline outside the band, but
a very steep decline followed by steady decline within the band. All of the systems show a tendency towards plastic
volumetric compaction (where plasticity occurs, outside the band merely unloads elastically in the constant volume
system), but within the shear band the constant volume system demonstrates a rapid decline to near-zero values,
while the constant confining stress systems show a steadier trajectory towards isochoric plastic shearing.
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